No Arabic abstract
Scanning tunnelling microscopy and density functional theory studies of manganese chains adsorbed on Cu$_2$N/Cu (100) reveal an unsuspected electronic edge state at $sim 1$ eV above the Fermi energy. This Tamm-like state is strongly localised to the last Mn atom of the chain and fully spin polarised. However, no equivalence is found for occupied states, and the electronic structure at $sim -1$ eV is mainly spin unpolarised due to the extended $p$-states of the N atoms that mediate the coupling between the Mn atoms in the chain. Odd-numbered Mn chains present an exponentially decreasing direct coupling with distance between the two edges, leading to a vanishing bonding/anti-bonding splitting of states while even-numbered Mn chains present perfect decoupling of both edges due to the the antiferromagnetic ordering of Mn chains.
Heterogeneous atomic magnetic chains are built by atom manipulation on a Cu$_2$N/Cu (100) substrate. Their magnetic properties are studied and rationalized by a combined scanning tunneling microscopy (STM) and density functional theory (DFT) work completed by model Hamiltonian studies. The chains are built using Fe and Mn atoms ontop of the Cu atoms along the N rows of the Cu$_2$N surface. Here, we present results for FeMn$_x$ ($x$=1...6) chains emphasizing the evolution of the geometrical, electronic, and magnetic properties with chain size. By fitting our results to a Heisenberg Hamiltonian we have studied the exchange-coupling matrix elements $J$ for different chains. For the shorter chains, $x leq 2$, we have included spin-orbit effects in the DFT calculations, extracting the magnetic anisotropy energy. Our results are also fitted to a simple anisotropic spin Hamiltonian and we have extracted values for the longitudinal-anisotropy $D$ and transversal-anisotropy $E$ constants. These parameters together with the values for $J$ allow us to compute the magnetic excitation energies of the system and to compare them with the experimental data.
Covalent substrates can give rise to a variety of magnetic interaction mechanisms among adsorbed transition metal atoms building atomic nanostructures. We show this by calculating the ground state magnetic configuration of monoatomic 3d chains deposited on a monolayer of Cu$_2$N grown on Cu(001) as a function of $d$ filling and of adsorption sites of the one dimensional nanostructures.
Low-temperature scanning tunneling spectroscopy reveals that the Kondo temperature T_K of Co atoms adsorbed on Cu/Co/Cu(100) multilayers varies between 60 K and 134 K as the Cu film thickness decreases from 20 to 5 atomic layers. The observed change of T_K is attributed to a variation of the density of states at the Fermi level rho_F induced by quantum well states confined to the Cu film. A model calculation based on the quantum oscillations of rho_F at the belly and the neck of the Cu Fermi surface reproduces most of the features in the measured variation of T_K.
We report on the magnetic properties of Fe and Co adatoms on a Cu$_{2}$N/Cu(100)-$c(2 times 2)$ surface investigated by x-ray magnetic dichroism measurements and density functional theory (DFT) calculations including the local coulomb interaction. We compare these results with properties formerly deduced from STM spin excitation spectroscopy (SES) performed on the individual adatoms. In particular we focus on the values of the local magnetic moments determined by XMCD compared to the expectation values derived from the description of the SES data.The angular dependence of the projected magnetic moments along the magnetic field, as measured by XMCD, can be understood on the basis of the SES Hamiltonian. In agreement with DFT, the XMCD measurements show large orbital contributions to the total magnetic moment for both magnetic adatoms.
The electronic structure of Me[N(CN)$_2$]$_2$ (Me=Mn, Fe, Co, Ni, Cu) molecular magnets has been investigated using x-ray emission spectroscopy (XES) and x-ray photoelectron spectroscopy (XPS) as well as theoretical density-functional-based methods. Both theory and experiments show that the top of the valence band is dominated by Me 3d bands, while a strong hybridization between C 2p and N 2p states determines the valence band electronic structure away from the top. The 2p contributions from non-equivalent nitrogen sites have been identified using resonant inelastic x-ray scattering spectroscopy with the excitation energy tuned near the N 1s threshold. The binding energy of the Me 3d bands and the hybridization between N 2p and Me 3d states both increase in going across the row from Me = Mn to Me = Cu. Localization of the Cu 3d states also leads to weak screening of Cu 2p and 3s states, which accounts for shifts in the core 2p and 3s spectra of the transition metal atoms. Calculations indicate that the ground-state magnetic ordering, which varies across the series is largely dependent on the occupation of the metal 3d shell and that structural differences in the superexchange pathways for different compounds play a secondary role.