Do you want to publish a course? Click here

Distributed Estimation of Dynamic Parameters : Regret Analysis

70   0   0.0 ( 0 )
 Added by Shahin Shahrampour
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

This paper addresses the estimation of a time- varying parameter in a network. A group of agents sequentially receive noisy signals about the parameter (or moving target), which does not follow any particular dynamics. The parameter is not observable to an individual agent, but it is globally identifiable for the whole network. Viewing the problem with an online optimization lens, we aim to provide the finite-time or non-asymptotic analysis of the problem. To this end, we use a notion of dynamic regret which suits the online, non-stationary nature of the problem. In our setting, dynamic regret can be recognized as a finite-time counterpart of stability in the mean- square sense. We develop a distributed, online algorithm for tracking the moving target. Defining the path-length as the consecutive differences between target locations, we express an upper bound on regret in terms of the path-length of the target and network errors. We further show the consistency of the result with static setting and noiseless observations.



rate research

Read More

In this paper, we consider the problem of distributed online convex optimization, where a network of local agents aim to jointly optimize a convex function over a period of multiple time steps. The agents do not have any information about the future. Existing algorithms have established dynamic regret bounds that have explicit dependence on the number of time steps. In this work, we show that we can remove this dependence assuming that the local objective functions are strongly convex. More precisely, we propose a gradient tracking algorithm where agents jointly communicate and descend based on corrected gradient steps. We verify our theoretical results through numerical experiments.
In this paper, we consider the problem of distributed online convex optimization, where a group of agents collaborate to track the global minimizers of a sum of time-varying objective functions in an online manner. Specifically, we propose a novel distributed online gradient descent algorithm that relies on an online adaptation of the gradient tracking technique used in static optimization. We show that the dynamic regret bound of this algorithm has no explicit dependence on the time horizon and, therefore, can be tighter than existing bounds especially for problems with long horizons. Our bound depends on a new regularity measure that quantifies the total change in the gradients at the optimal points at each time instant. Furthermore, when the optimizer is approximatly subject to linear dynamics, we show that the dynamic regret bound can be further tightened by replacing the regularity measure that captures the path length of the optimizer with the accumulated prediction errors, which can be much lower in this special case. We present numerical experiments to corroborate our theoretical results.
In this work, we consider a distributed online convex optimization problem, with time-varying (potentially adversarial) constraints. A set of nodes, jointly aim to minimize a global objective function, which is the sum of local convex functions. The objective and constraint functions are revealed locally to the nodes, at each time, after taking an action. Naturally, the constraints cannot be instantaneously satisfied. Therefore, we reformulate the problem to satisfy these constraints in the long term. To this end, we propose a distributed primal-dual mirror descent based approach, in which the primal and dual updates are carried out locally at all the nodes. This is followed by sharing and mixing of the primal variables by the local nodes via communication with the immediate neighbors. To quantify the performance of the proposed algorithm, we utilize the challenging, but more realistic metrics of dynamic regret and fit. Dynamic regret measures the cumulative loss incurred by the algorithm, compared to the best dynamic strategy. On the other hand, fit measures the long term cumulative constraint violations. Without assuming the restrictive Slaters conditions, we show that the proposed algorithm achieves sublinear regret and fit under mild, commonly used assumptions.
In this paper, we consider the binary classification problem via distributed Support-Vector-Machines (SVM), where the idea is to train a network of agents, with limited share of data, to cooperatively learn the SVM classifier for the global database. Agents only share processed information regarding the classifier parameters and the gradient of the local loss functions instead of their raw data. In contrast to the existing work, we propose a continuous-time algorithm that incorporates network topology changes in discrete jumps. This hybrid nature allows us to remove chattering that arises because of the discretization of the underlying CT process. We show that the proposed algorithm converges to the SVM classifier over time-varying weight balanced directed graphs by using arguments from the matrix perturbation theory.
In this paper, we consider a distributed learning problem in a subnetwork zero-sum game, where agents are competing in different subnetworks. These agents are connected through time-varying graphs where each agent has its own cost function and can receive information from its neighbors. We propose a distributed mirror descent algorithm for computing a Nash equilibrium and establish a sublinear regret bound on the sequence of iterates when the graphs are uniformly strongly connected and the cost functions are convex-concave. Moreover, we prove its convergence with suitably selected diminishing stepsizes for a strictly convex-concave cost function. We also consider a constant step-size variant of the algorithm and establish an asymptotic error bound between the cost function values of running average actions and a Nash equilibrium. In addition, we apply the algorithm to compute a mixed-strategy Nash equilibrium in subnetwork zero-sum finite-strategy games, which have merely convex-concave (to be specific, multilinear) cost functions, and obtain a final-iteration convergence result and an ergodic convergence result, respectively, under different assumptions.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا