Do you want to publish a course? Click here

Large, Extra Dimensions at the Deep Underground Neutrino Experiment

102   0   0.0 ( 0 )
 Added by Jeffrey Berryman
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

We investigate the potential of the long-baseline Deep Underground Neutrino Experiment (DUNE) to study large-extra-dimension (LED) models originally proposed to explain the smallness of neutrino masses by postulating that right-handed neutrinos, unlike all standard model fermion fields, can propagate in the bulk. The massive Kaluza-Klein (KK) modes of the right-handed neutrino fields modify the neutrino oscillation probabilities and can hence affect their propagation. We show that, as far as DUNE is concerned, the LED model is indistinguishable from a $(3 + 3N)$-neutrino framework for modest values of $N$; $N$ = 1 is usually a very good approximation. Nonetheless, there are no new sources of $CP$-invariance violation other than one $CP$-odd phase that can be easily mapped onto the $CP$-odd phase in the standard three-neutrino paradigm. We analyze the sensitivity of DUNE to the LED framework, and explore the capability of DUNE to differentiate the LED model from the three-neutrino scenario and from a generic $(3 + 1)$-neutrino model.

rate research

Read More

We consider a model where right-handed neutrinos propagate in a large compactified extra dimension, engendering Kaluza-Klein (KK) modes, while the standard model particles are restricted to the usual 4-dimensional brane. A mass term mixes the KK modes with the standard left-handed neutrinos, opening the possibility of change the 3 generation mixing pattern. We derive bounds on the maximum size of the extra dimension from neutrino oscillation experiments. We show that this model provides a possible explanation for the deficit of nu_e in Ga solar neutrino calibration experiments and of the anti-nu_e in short baseline reactor experiments.
Current long-baseline neutrino-oscillation experiments such as NO$ u$A and T2K are mainly sensitive to physics in the neighbourhood of the first oscillation maximum of the $ u_mu to u_e$ oscillation probability. The future Deep Underground Neutrino Experiment (DUNE) utilizes a wide-band beam tune optimized for CP violation sensitivity that fully covers the region of the first maxima and part of the second. In the present study, we elucidate the role of second oscillation maximum in addressing issues pertaining to unknowns in the standard three flavour paradigm. We consider a new DUNE beam tune optimized for coverage of the region of the second oscillation maxima which could be realized using proposed accelerator upgrades that provide multi-MW of power at proton energies of 8 GeV. We find that addition of the multi-MW 8 GeV beam to DUNE wide-band running leads to modest improvement in sensitivity to CP violation, mass hierarchy, the octant of $theta_{23}$ as well as the resolution of $delta$ and the Jarlskog invariant. Significant improvements to the DUNE neutrino energy resolution yield a much larger improvement in performance. We conclude that the standard DUNE wide-band beam when coupled with excellent detector resolution capabilities is sufficient to resolve $delta$ to better than $sim 12^circ$ for all values of $delta$ in a decade of running. For second maxima (8 GeV 3MW) beam running concurrently with the standard wide-band (80 GeV 2.2 MW) beam for 5 of the 10 years, it is found that $delta$ can be further resolved better than $sim 10^circ$ for all values of $delta$.
The Deep Underground Neutrino Experiment (DUNE), a 40-kton underground liquid argon time projection chamber experiment, will be sensitive to the electron-neutrino flavor component of the burst of neutrinos expected from the next Galactic core-collapse supernova. Such an observation will bring unique insight into the astrophysics of core collapse as well as into the properties of neutrinos. The general capabilities of DUNE for neutrino detection in the relevant few- to few-tens-of-MeV neutrino energy range will be described. As an example, DUNEs ability to constrain the $ u_e$ spectral parameters of the neutrino burst will be considered.
194 - Giorgio Busoni 2016
I extract new limits on the coefficient of the effective operator generated by tree-level graviton exchange in large extra dimensions from $pp rightarrow jj$ angular distributions at LHC: $M_T > 6.8$ TeV (CMS after $2.6 fb^{-1}$ of integrated luminosity) and $M_T > 8.3$ TeV (ATLAS after $3.6 fb^{-1}$). I also compare such limits to the ones obtained using the full graviton amplitude, and discuss the impact of additional constrains arising from other datasets, such as Mono-Jet.
We report new constraints on the size of large extra dimensions from data collected by the MINOS experiment between 2005 and 2012. Our analysis employs a model in which sterile neutrinos arise as Kaluza-Klein states in large extra dimensions and thus modify the neutrino oscillation probabilities due to mixing between active and sterile neutrino states. Using Fermilabs NuMI beam exposure of $10.56 times 10^{20}$ protons-on-target, we combine muon neutrino charged current and neutral current data sets from the Near and Far Detectors and observe no evidence for deviations from standard three-flavor neutrino oscillations. The ratios of reconstructed energy spectra in the two detectors constrain the size of large extra dimensions to be smaller than $0.45,mutext{m}$ at 90% C.L. in the limit of a vanishing lightest active neutrino mass. Stronger limits are obtained for non-vanishing masses.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا