Do you want to publish a course? Click here

Large Extra Dimensions at LHC Run 2

195   0   0.0 ( 0 )
 Added by Giorgio Busoni
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

I extract new limits on the coefficient of the effective operator generated by tree-level graviton exchange in large extra dimensions from $pp rightarrow jj$ angular distributions at LHC: $M_T > 6.8$ TeV (CMS after $2.6 fb^{-1}$ of integrated luminosity) and $M_T > 8.3$ TeV (ATLAS after $3.6 fb^{-1}$). I also compare such limits to the ones obtained using the full graviton amplitude, and discuss the impact of additional constrains arising from other datasets, such as Mono-Jet.



rate research

Read More

We study Kaluza-Klein (KK) graviton production in the large extra dimensions model via 2 jets plus missing transverse momentum signatures at the LHC. We make predictions for both the signal and the dominant Zjj and Wjj backgrounds, where we introduce missing P_T-dependent jet selection cuts that ensure the smallness of the 2-jet rate over the 1-jet rate. With the same jet selection cuts, the distributions of the two jets and their correlation with the missing transverse momentum provide additional evidence for the production of an invisible massive object.
Extensions of the standard model with universal extra dimensions are interesting both as phenomenological templates as well as model-building fertile ground. For instance, they are one the prototypes for theories exhibiting compressed spectra, leading to difficult searches at the LHC since the decay products of new states are soft and immersed in a large standard model background. Here we study the phenomenology at the LHC of theories with two universal extra dimensions. We obtain the current bound by using the production of second level excitations of electroweak gauge bosons decaying to a pair of leptons and study the reach of the LHC Run~II in this channel. We also introduce a new channel originating in higher dimensional operators and resulting in the single production of a second level quark excitation. Its subsequent decay into a hard jet and lepton pair resonance would allow the identification of a more model-specific process, unlike the more generic vector resonance signal. We show that the sensitivity of this channel to the compactification scale is very similar to the one obtained using the vector resonance.
We investigate the potential of the long-baseline Deep Underground Neutrino Experiment (DUNE) to study large-extra-dimension (LED) models originally proposed to explain the smallness of neutrino masses by postulating that right-handed neutrinos, unlike all standard model fermion fields, can propagate in the bulk. The massive Kaluza-Klein (KK) modes of the right-handed neutrino fields modify the neutrino oscillation probabilities and can hence affect their propagation. We show that, as far as DUNE is concerned, the LED model is indistinguishable from a $(3 + 3N)$-neutrino framework for modest values of $N$; $N$ = 1 is usually a very good approximation. Nonetheless, there are no new sources of $CP$-invariance violation other than one $CP$-odd phase that can be easily mapped onto the $CP$-odd phase in the standard three-neutrino paradigm. We analyze the sensitivity of DUNE to the LED framework, and explore the capability of DUNE to differentiate the LED model from the three-neutrino scenario and from a generic $(3 + 1)$-neutrino model.
Many models that include small extra space dimensions predict graviton states which are well separated in mass, and which can be detected as resonances in collider experiments. It has been shown that the ATLAS detector at the Large Hadron Collider can identify such narrow states up to a mass of 2080 GeV in the decay mode G->ee, using a conservative model. This work extends the study of the ee channel over the full accessible parameter space, and shows that the reach could extend as high as 3.5 TeV. It then discusses ways in which the expected universal coupling of the resonance can be confirmed using other decay modes. In particular, the mode G-> di-photons is shown to be measurable with good precision, which would provide powerful confirmation of the graviton hypothesis. The decays G-> mu mu, WW, ZZ and jet--jet are measurable over a more limited range of couplings and masses. Using information from mass and cross-section measurements, the underlying parameters can be extracted. In one test model, the size of the extra dimension can be determined to a precision in length of 7x10^-33 m.
We consider a model where right-handed neutrinos propagate in a large compactified extra dimension, engendering Kaluza-Klein (KK) modes, while the standard model particles are restricted to the usual 4-dimensional brane. A mass term mixes the KK modes with the standard left-handed neutrinos, opening the possibility of change the 3 generation mixing pattern. We derive bounds on the maximum size of the extra dimension from neutrino oscillation experiments. We show that this model provides a possible explanation for the deficit of nu_e in Ga solar neutrino calibration experiments and of the anti-nu_e in short baseline reactor experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا