Do you want to publish a course? Click here

Beyond the French Flag Model: Exploiting Spatial and Gene Regulatory Interactions for Positional Information

95   0   0.0 ( 0 )
 Added by Patrick Hillenbrand
 Publication date 2016
  fields Biology
and research's language is English




Ask ChatGPT about the research

A crucial step in the early development of multicellular organisms involves the establishment of spatial patterns of gene expression which later direct proliferating cells to take on different cell fates. These patterns enable the cells to infer their global position within a tissue or an organism by reading out local gene expression levels. The patterning system is thus said to encode positional information, a concept that was formalized recently in the framework of information theory. Here we introduce a toy model of patterning in one spatial dimension, which can be seen as an extension of Wolperts paradigmatic French Flag model, to patterning by several interacting, spatially coupled genes subject to intrinsic and extrinsic noise. Our model, a variant of an Ising spin system, allows us to systematically explore expression patterns that optimally encode positional information. We find that optimal patterning systems use positional cues, as in the French Flag model, together with gene-gene interactions to generate combinatorial codes for position which we call Counter patterns. Counter patterns can also be stabilized against noise and variations in system size or morphogen dosage by longer-range spatial interactions of the type invoked in the Turing model. The simple setup proposed here qualitatively captures many of the experimentally observed properties of biological patterning systems and allows them to be studied in a single, theoretically consistent framework.



rate research

Read More

Based on a non-equilibrium mechanism for spatial pattern formation we study how position information can be controlled by locally coupled discrete dynamical networks, similar to gene regulation networks of cells in a developing multicellular organism. As an example we study the developmental problems of domain formation and proportion regulation in the presence of noise, as well as in the presence of cell flow. We find that networks that solve this task exhibit a hierarchical structure of information processing and are of similar complexity as developmental circuits of living cells. Proportion regulation is scalable with system size and leads to sharp, precisely localized boundaries of gene expression domains, even for large numbers of cells. A detailed analysis of noise-induced dynamics, using a mean-field approximation, shows that noise in gene expression states stabilizes (rather than disrupts) the spatial pattern in the presence of cell movements, both for stationary as well as growing systems. Finally, we discuss how this mechanism could be realized in the highly dynamic environment of growing tissues in multi-cellular organisms.
Genes and proteins regulate cellular functions through complex circuits of biochemical reactions. Fluctuations in the components of these regulatory networks result in noise that invariably corrupts the signal, possibly compromising function. Here, we create a practical formalism based on ideas introduced by Wiener and Kolmogorov (WK) for filtering noise in engineered communications systems to quantitatively assess the extent to which noise can be controlled in biological processes involving negative feedback. Application of the theory, which reproduces the previously proven scaling of the lower bound for noise suppression in terms of the number of signaling events, shows that a tetracycline repressor-based negative-regulatory gene circuit behaves as a WK filter. For the class of Hill-like nonlinear regulatory functions, this type of filter provides the optimal reduction in noise. Our theoretical approach can be readily combined with experimental measurements of response functions in a wide variety of genetic circuits, to elucidate the general principles by which biological networks minimize noise.
Gene regulatory networks (GRNs) control cellular function and decision making during tissue development and homeostasis. Mathematical tools based on dynamical systems theory are often used to model these networks, but the size and complexity of these models mean that their behaviour is not always intuitive and the underlying mechanisms can be difficult to decipher. For this reason, methods that simplify and aid exploration of complex networks are necessary. To this end we develop a broadly applicable form of the Zwanzig-Mori projection. By first converting a thermodynamic state ensemble model of gene regulation into mass action reactions we derive a general method that produces a set of time evolution equations for a subset of components of a network. The influence of the rest of the network, the bulk, is captured by memory functions that describe how the subnetwork reacts to its own past state via components in the bulk. These memory functions provide probes of near-steady state dynamics, revealing information not easily accessible otherwise. We illustrate the method on a simple cross-repressive transcriptional motif to show that memory functions not only simplify the analysis of the subnetwork but also have a natural interpretation. We then apply the approach to a GRN from the vertebrate neural tube, a well characterised developmental transcriptional network composed of four interacting transcription factors. The memory functions reveal the function of specific links within the neural tube network and identify features of the regulatory structure that specifically increase the robustness of the network to initial conditions. Taken together, the study provides evidence that Zwanzig-Mori projections offer powerful and effective tools for simplifying and exploring the behaviour of GRNs.
Gene transcription is a stochastic process mostly occurring in bursts. Regulation of transcription arises from the interaction of transcription factors (TFs) with the promoter of the gene. The TFs, such as activators and repressors can interact with the promoter in a competitive or non-competitive way. Some experimental observations suggest that the mean expression and noise strength can be regulated at the transcription level. A Few theories are developed based on these experimental observations. Here we re-establish that experimental results with the help of our exact analytical calculations for a stochastic model with non-competitive transcriptional regulatory architecture and find out some properties of Noise strength (like sub-Poissonian fano factor) and mean expression as we found in a two state model earlier. Along with those aforesaid properties we also observe some anomalous characteristics in noise strength of mRNA and in variance of protein at lower activator concentrations.
The complex dynamics of gene expression in living cells can be well-approximated using Boolean networks. The average sensitivity is a natural measure of stability in these systems: values below one indicate typically stable dynamics associated with an ordered phase, whereas values above one indicate chaotic dynamics. This yields a theoretically motivated adaptive advantage to being near the critical value of one, at the boundary between order and chaos. Here, we measure average sensitivity for 66 publicly available Boolean network models describing the function of gene regulatory circuits across diverse living processes. We find the average sensitivity values for these networks are clustered around unity, indicating they are near critical. In many types of random networks, mean connectivity <K> and the average activity bias of the logic functions <p> have been found to be the most important network properties in determining average sensitivity, and by extension a networks criticality. Surprisingly, many of these gene regulatory networks achieve the near-critical state with <K> and <p> far from that predicted for critical systems: randomized networks sharing the local causal structure and local logic of biological networks better reproduce their critical behavior than controlling for macroscale properties such as <K> and <p> alone. This suggests the local properties of genes interacting within regulatory networks are selected to collectively be near-critical, and this non-local property of gene regulatory network dynamics cannot be predicted using the density of interactions alone.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا