Do you want to publish a course? Click here

Stochastic gene transcription with non-competitive transcription regulatory architecture

250   0   0.0 ( 0 )
 Added by Amit Kumar Das
 Publication date 2021
  fields Biology Physics
and research's language is English




Ask ChatGPT about the research

Gene transcription is a stochastic process mostly occurring in bursts. Regulation of transcription arises from the interaction of transcription factors (TFs) with the promoter of the gene. The TFs, such as activators and repressors can interact with the promoter in a competitive or non-competitive way. Some experimental observations suggest that the mean expression and noise strength can be regulated at the transcription level. A Few theories are developed based on these experimental observations. Here we re-establish that experimental results with the help of our exact analytical calculations for a stochastic model with non-competitive transcriptional regulatory architecture and find out some properties of Noise strength (like sub-Poissonian fano factor) and mean expression as we found in a two state model earlier. Along with those aforesaid properties we also observe some anomalous characteristics in noise strength of mRNA and in variance of protein at lower activator concentrations.



rate research

Read More

There is growing appreciation that gene function is connected to the dynamic structure of the chromosome. Here we explore the interplay between three-dimensional structure and transcriptional activity at the single cell level. We show that inactive loci are spatially more compact than active ones, and that within active loci the enhancer driving transcription is closest to the promoter. On the other hand, even this shortest distance is too long to support direct physical contact between the enhancer-promoter pair when the locus is transcriptionally active. Artificial manipulation of genomic separations between enhancers and the promoter produces changes in physical distance and transcriptional activity, recapitulating the correlation seen in wild-type embryos, but disruption of topological domain boundaries has no effect. Our results suggest a complex interdependence between transcription and the spatial organization of cis-regulatory elements.
Genes and proteins regulate cellular functions through complex circuits of biochemical reactions. Fluctuations in the components of these regulatory networks result in noise that invariably corrupts the signal, possibly compromising function. Here, we create a practical formalism based on ideas introduced by Wiener and Kolmogorov (WK) for filtering noise in engineered communications systems to quantitatively assess the extent to which noise can be controlled in biological processes involving negative feedback. Application of the theory, which reproduces the previously proven scaling of the lower bound for noise suppression in terms of the number of signaling events, shows that a tetracycline repressor-based negative-regulatory gene circuit behaves as a WK filter. For the class of Hill-like nonlinear regulatory functions, this type of filter provides the optimal reduction in noise. Our theoretical approach can be readily combined with experimental measurements of response functions in a wide variety of genetic circuits, to elucidate the general principles by which biological networks minimize noise.
Based on a recently proposed non-equilibrium mechanism for spatial pattern formation [cond-mat/0312366] we study how morphogenesis can be controlled by locally coupled discrete dynamical networks, similar to gene regulation networks of cells in a developing multicellular organism. As an example we study the developmental problem of domain formation and proportion regulation in the presence of noise and cell flow. We find that networks that solve this task exhibit a hierarchical structure of information processing and are of similar complexity as developmental circuits of living cells. A further focus of this paper is a detailed study of noise-induced dynamics, which is a major ingredient of the control dynamics in the developmental network model. A master equation for domain boundary readjustments is formulated and solved for the continuum limit. Evidence for a first order phase transition in equilibrium domain size at vanishing noise is given by finite size scaling. A second order phase transition at increased cell flow is studied in a mean field approximation. Finally, we discuss potential applications.
559 - J.C. Nacher , T. Ochiai 2007
Recently, several studies have investigated the transcription process associated to specific genetic regulatory networks. In this work, we present a stochastic approach for analyzing the dynamics and effect of negative feedback loops (FBL) on the transcriptional noise. First, our analysis allows us to identify a bimodal activity depending of the strength of self-repression coupling D. In the strong coupling region D>>1, the variance of the transcriptional noise is found to be reduced a 28 % more than described earlier. Secondly, the contribution of the noise effect to the abundance of regulating protein becomes manifest when the coefficient of variation is computed. In the strong coupling region, this coefficient is found to be independent of all parameters and in fair agreement with the experimentally observed values. Finally, our analysis reveals that the regulating protein is significantly induced by the intrinsic and external noise in the strong coupling region. In short, it indicates that the existence of inherent noise in FBL makes it possible to produce a basal amount of proteins even though the repression level D is very strong.
Genetic regulatory circuits universally cope with different sources of noise that limit their ability to coordinate input and output signals. In many cases, optimal regulatory performance can be thought to correspond to configurations of variables and parameters that maximize the mutual information between inputs and outputs. Such optima have been well characterized in several biologically relevant cases over the past decade. Here we use methods of statistical field theory to calculate the statistics of the maximal mutual information (the `capacity) achievable by tuning the input variable only in an ensemble of regulatory motifs, such that a single controller regulates N targets. Assuming (i) sufficiently large N, (ii) quenched random kinetic parameters, and (iii) small noise affecting the input-output channels, we can accurately reproduce numerical simulations both for the mean capacity and for the whole distribution. Our results provide insight into the inherent variability in effectiveness occurring in regulatory systems with heterogeneous kinetic parameters.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا