Do you want to publish a course? Click here

Dispersion laws of the two-dimensional cavity magnetoexciton-polaritons

124   0   0.0 ( 0 )
 Added by Michael Liberman A
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The energy spectrum of the 2D cavity magnetoexciton-polaritons has been investigated previously, using exact solutions for the Landau quantization of conduction electrons and heavy holes provided by the Rashba method [1]. Two lowest Landau quantization levels for electrons and three lowest Landau levels for heavy-holes, lead to the construction of the six lowest magnetoexciton sates. They consist of two dipole-active, two quadrupole-active, and the two forbidden quantum transitions from the ground state of the crystal to the magnetoexciton states. The interaction of the four optical-active magnetoexciton states with the cavity mode photons with a given circular polarization and with well-defined incidence direction leads to the creation of five magnetoexciton-polariton branches. The fifth order dispersion equation is examined by using numerical calculations and the second order dispersion equation is solved analytically, taking into account only one dipole-active magnetoexciton state. The effective polariton mass on the lower polariton branch, the Rabi frequency and the corresponding Hopfield coefficients are determined in dependence on the magnetic field strength, the Rashba spin-orbit coupling parameters and the electron and hole g-factors.



rate research

Read More

Bose-Einstein condensate of exciton polaritons in a semiconductor microcavity is a macroscopically populated coherent quantum state subject to concurrent pumping and decay. Debates about the fundamental nature of the condensed phase in this open quantum system still persist. Here, we gain a new insight into the spontaneous condensation process by imaging long-lifetime exciton polaritons in a high-quality inorganic microcavity in the single-shot optical excitation regime, without averaging over multiple condensate realisations. In this highly non-stationary regime, a condensate is strongly influenced by the `hot incoherent reservoir, and reservoir depletion is critical for the transition to the ground energy and momentum state. Condensates formed by more photonic exciton polaritons exhibit dramatic reservoir-induced density filamentation and shot-to-shot fluctuations. In contrast, condensates of more excitonic quasiparticles display smooth density and are second-order coherent. Our observations show that the single-shot measurements offer a unique opportunity to study formation of macroscopic phase coherence during a quantum phase transition in a solid state system.
We consider the possible phases of microcavity polaritons tuned near a bipolariton Feshbach resonance. We show that, as well as the regular polariton superfluid phase, a molecular superfluid exists, with (quasi-)long-range order only for pairs of polaritons. We describe the experimental signatures of this state. Using variational approaches we find the phase diagram (critical temperature, density and exciton-photon detuning). Unlike ultracold atoms, the molecular superfluid is not inherently unstable, and our phase diagram suggests it is attainable in current experiments.
72 - T. Gao , E. Estrecho , G. Li 2016
We demonstrate, experimentally and theoretically, a Talbot effect for hybrid light-matter waves -- exciton-polariton condensate formed in a semiconductor microcavity with embedded quantum wells. The characteristic Talbot carpet is produced by loading the exciton-polariton condensate into a microstructured one dimensional periodic array of mesa traps, which creates an array of sources for coherent polariton flow in the plane of the quantum wells. The spatial distribution of the Talbot fringes outside the mesas mimics the near-field diffraction of a monochromatic wave on a periodic amplitude and phase grating with the grating period comparable to the wavelength. Despite the lossy nature of the polariton system, the Talbot pattern persists for distances exceeding the size of the mesas by an order of magnitude.
Ensembles with long-range interactions between particles are promising for revealing strong quantum collective effects and many-body phenomena. Here we study the ground-state phase diagram of a two-dimensional Bose system with quadrupolar interactions using a diffusion Monte Carlo technique. We predict a quantum phase transition from a gas to a solid phase. The Lindemann ratio and the condensate fraction at the transition point are $gamma=0.269(4)$ and $n_0/n=0.031(4)$, correspondingly. We observe the strong rotonization of the collective excitation branch in the vicinity of the phase transition point. Our results can be probed using state-of-the-art experimental systems of various nature, such as quasi-two-dimensional systems of quadrupolar excitons in transition metal dichalcogenide (TMD) trilayers, quadrupolar molecules, and excitons or Rydberg atoms with quadrupole moments induced by strong magnetic fields.
We report the first observation of the magnon-polariton bistability in a cavity magnonics system consisting of cavity photons strongly interacting with the magnons in a small yttrium iron garnet (YIG) sphere. The bistable behaviors are emerged as sharp frequency switchings of the cavity magnon-polaritons (CMPs) and related to the transition between states with large and small number of polaritons. In our experiment, we align, respectively, the [100] and [110] crystallographic axes of the YIG sphere parallel to the static magnetic field and find very different bistable behaviors (e.g., clockwise and counter-clockwise hysteresis loops) in these two cases. The experimental results are well fitted and explained as being due to the Kerr nonlinearity with either positive or negative coefficient. Moreover, when the magnetic field is tuned away from the anticrossing point of CMPs, we observe simultaneous bistability of both magnons and cavity photons by applying a drive field on the lower branch.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا