Do you want to publish a course? Click here

Improved Frechet$-$Hoeffding bounds on $d$-copulas and applications in model-free finance

92   0   0.0 ( 0 )
 Publication date 2016
  fields Financial
and research's language is English




Ask ChatGPT about the research

We derive upper and lower bounds on the expectation of $f(mathbf{S})$ under dependence uncertainty, i.e. when the marginal distributions of the random vector $mathbf{S}=(S_1,dots,S_d)$ are known but their dependence structure is partially unknown. We solve the problem by providing improved FH bounds on the copula of $mathbf{S}$ that account for additional information. In particular, we derive bounds when the values of the copula are given on a compact subset of $[0,1]^d$, the value of a functional of the copula is prescribed or different types of information are available on the lower dimensional marginals of the copula. We then show that, in contrast to the two-dimensional case, the bounds are quasi-copulas but fail to be copulas if $d>2$. Thus, in order to translate the improved FH bounds into bounds on the expectation of $f(mathbf{S})$, we develop an alternative representation of multivariate integrals with respect to copulas that admits also quasi-copulas as integrators. By means of this representation, we provide an integral characterization of orthant orders on the set of quasi-copulas which relates the improved FH bounds to bounds on the expectation of $f(mathbf{S})$. Finally, we apply these results to compute model-free bounds on the prices of multi-asset options that take partial information on the dependence structure into account, such as correlations or market prices of other traded derivatives. The numerical results show that the additional information leads to a significant improvement of the option price bounds compared to the situation where only the marginal distributions are known.



rate research

Read More

68 - T. R. Cass , P. K. Friz 2006
We extend the Bismut-Elworthy-Li formula to non-degenerate jump diffusions and payoff functions depending on the process at multiple future times. In the spirit of Fournie et al [13] and Davis and Johansson [9] this can improve Monte Carlo numerics for stochastic volatility models with jumps. To this end one needs so-called Malliavin weights and we give explicit formulae valid in presence of jumps: (a) In a non-degenerate situation, the extended BEL formula represents possible Malliavin weights as Ito integrals with explicit integrands; (b) in a hypoelliptic setting we review work of Arnaudon and Thalmaier [1] and also find explicit weights, now involving the Malliavin covariance matrix, but still straight-forward to implement. (This is in contrast to recent work by Forster, Lutkebohmert and Teichmann where weights are constructed as anticipating Skorohod integrals.) We give some financial examples covered by (b) but note that most practical cases of poor Monte Carlo performance, Digital Cliquet contracts for instance, can be dealt with by the extended BEL formula and hence without any reliance on Malliavin calculus at all. We then discuss some of the approximations, often ignored in the literature, needed to justify the use of the Malliavin weights in the context of standard jump diffusion models. Finally, as all this is meant to improve numerics, we give some numerical results with focus on Cliquets under the Heston model with jumps.
Using Dupires notion of vertical derivative, we provide a functional (path-dependent) extension of the It^os formula of Gozzi and Russo (2006) that applies to C^{0,1}-functions of continuous weak Dirichlet processes. It is motivated and illustrated by its applications to the hedging or superhedging problems of path-dependent options in mathematical finance, in particular in the case of model uncertainty
We consider the problem of superhedging under volatility uncertainty for an investor allowed to dynamically trade the underlying asset, and statically trade European call options for all possible strikes with some given maturity. This problem is classically approached by means of the Skorohod Embedding Problem (SEP). Instead, we provide a dual formulation which converts the superhedging problem into a continuous martingale optimal transportation problem. We then show that this formulation allows us to recover previously known results about lookback options. In particular, our methodology induces a new proof of the optimality of Az{e}ma-Yor solution of the SEP for a certain class of lookback options. Unlike the SEP technique, our approach applies to a large class of exotics and is suitable for numerical approximation techniques.
172 - Giovanni Peccati 2009
It is proved that each Hoeffding space associated with a random permutation (or, equivalently, with extractions without replacement from a finite population) carries an irreducible representation of the symmetric group, equivalent to a two-block Specht module.
Since the pioneering work of Gerhard Gruss dating back to 1935, Grusss inequality and, more generally, Gruss-type bounds for covariances have fascinated researchers and found numerous applications in areas such as economics, insurance, reliability, and, more generally, decision making under uncertainly. Gruss-type bounds for covariances have been established mainly under most general dependence structures, meaning no restrictions on the dependence structure between the two underlying random variables. Recent work in the area has revealed a potential for improving Gruss-type bounds, including the original Grusss bound, assuming dependence structures such as quadrant dependence (QD). In this paper we demonstrate that the relatively little explored notion of `quadrant dependence in expectation (QDE) is ideally suited in the context of bounding covariances, especially those that appear in the aforementioned areas of application. We explore this research avenue in detail, establish general Gruss-type bounds, and illustrate them with newly constructed examples of bivariate distributions, which are not QD but, nevertheless, are QDE. The examples rely on specially devised copulas. We supplement the examples with results concerning general copulas and their convex combinations. In the process of deriving Gruss-type bounds, we also establish new bounds for central moments, whose optimality is demonstrated.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا