No Arabic abstract
There are deep, but hidden, geometric structures within jammed systems, associated with hidden symmetries. These can be revealed by repeated transformations under which these structures lead to fixed points. These geometric structures can be found in the Voronoi tesselation of space defined by the packing. In this paper we examine two iterative processes: maximum inscribed sphere (MIS) inversion and a real-space coarsening scheme. Under repeated iterations of the MIS inversion process we find invariant systems in which every particle is equal to the maximum inscribed sphere within its Voronoi cell. Using a real-space coarsening scheme we reveal behavior in geometric order parameters which is length-scale invariant.
Jammed systems all have a yield stress. Among these materials some have been shown to shear-band but it is as yet unclear why some materials develop shear-band and some others do not. In order to rationalize existing data concerning the flow characteristics of jammed systems and in particular understand the physical origin of such a difference we propose a simple approach for describing the steady flow behaviour of yield stress fluids, which retains only basic physical ingredients. Within this frame we show that in the liquid regime the behaviour of jammed systems turns from that of a simple yield stress fluid (exhibiting homogeneous flows) to a shear-banding material when the ratio of a characteristic relaxation time of the system to a restructuring time becomes smaller than 1, thus suggesting a possible physical origin of these trends.
The mechanical and transport properties of jammed materials originate from an underlying per- colating network of contact forces between the grains. Using extensive simulations we investigate the force-percolation transition of this network, where two particles are considered as linked if their interparticle force overcomes a threshold. We show that this transition belongs to the random percolation universality class, thus ruling out the existence of long-range correlations between the forces. Through a combined size and pressure scaling for the percolative quantities, we show that the continuous force percolation transition evolves into the discontinuous jamming transition in the zero pressure limit, as the size of the critical region scales with the pressure.
We consider the zero-energy deformations of periodic origami sheets with generic crease patterns. Using a mapping from the linear folding motions of such sheets to force-bearing modes in conjunction with the Maxwell-Calladine index theorem we derive a relation between the number of linear folding motions and the number of rigid body modes that depends only on the average coordination number of the origamis vertices. This supports the recent result by Tachi which shows periodic origami sheets with triangular faces exhibit two-dimensional spaces of rigidly foldable cylindrical configurations. We also find, through analytical calculation and numerical simulation, branching of this configuration space from the flat state due to geometric compatibility constraints that prohibit finite Gaussian curvature. The same counting argument leads to pairing of spatially varying modes at opposite wavenumber in triangulated origami, preventing topological polarization but permitting a family of zero energy deformations in the bulk that may be used to reconfigure the origami sheet.
More than 30 years ago Edwards and co-authors proposed a model to describe the statistics of granular packings by an ensemble of equiprobable jammed states. Experimental tests of this model remained scarce so far. We introduce a simple system to analyze statistical properties of jammed granular ensembles to test Edwards theory. Identical spheres packed in a nearly two-dimensional geometrical confinement were studied in experiments and numerical simulations. When tapped, the system evolves towards a ground state, but due to incompatible domain structures it gets trapped. Analytical calculations reproduce relatively well our simulation results, which allows us to test Edwards theory on a coupled system of two subsystems with different properties. We find that the joint system can only be described by the Edwards theory if considered as a single system due to the constraints in the stresses. The results show counterintuitive effects as in the coupled system the change in the order parameter is opposite to what is expected from the change in the compactivity.
Granular matter at the jamming transition is poised on the brink of mechanical stability, and hence it is possible that these random systems have topologically protected surface phonons. Studying two model systems for jammed matter, we find states that exhibit distinct mechanical topological classes, protected surface modes, and ubiquitous Weyl points. The detailed statistics of the boundary modes enable tests of a standard understanding of the detailed features of the jamming transition, and show that parts of this argument are invalid.