Do you want to publish a course? Click here

Online Tree Caching

93   0   0.0 ( 0 )
 Added by Marcin Bienkowski
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

We initiate the study of a natural and practically relevant new variant of online caching where the to-be-cached items can have dependencies. We assume that the universe is a tree T and items are tree nodes; we require that if a node v is cached then the whole subtree T(v) rooted at v is cached as well. This theoretical problem finds an immediate application in the context of forwarding table optimization in IP routing and software-defined networks. We present an elegant online deterministic algorithm TC for this problem, and rigorously prove that its competitive ratio is O(height(T) * k_ALG/(k_ALG-k_OPT+1)), where k_ALG and k_OPT denote the cache sizes of an online and the optimal offline algorithm, respectively. The result is optimal up to a factor of O(height(T)).



rate research

Read More

164 - Dhruv Rohatgi 2019
In the model of online caching with machine learned advice, introduced by Lykouris and Vassilvitskii, the goal is to solve the caching problem with an online algorithm that has access to next-arrival predictions: when each input element arrives, the algorithm is given a prediction of the next time when the element will reappear. The traditional model for online caching suffers from an $Omega(log k)$ competitive ratio lower bound (on a cache of size $k$). In contrast, the augmented model admits algorithms which beat this lower bound when the predictions have low error, and asymptotically match the lower bound when the predictions have high error, even if the algorithms are oblivious to the prediction error. In particular, Lykouris and Vassilvitskii showed that there is a prediction-augmented caching algorithm with a competitive ratio of $O(1+min(sqrt{eta/OPT}, log k))$ when the overall $ell_1$ prediction error is bounded by $eta$, and $OPT$ is the cost of the optimal offline algorithm. The dependence on $k$ in the competitive ratio is optimal, but the dependence on $eta/OPT$ may be far from optimal. In this work, we make progress towards closing this gap. Our contributions are twofold. First, we provide an improved algorithm with a competitive ratio of $O(1 + min((eta/OPT)/k, 1) log k)$. Second, we provide a lower bound of $Omega(log min((eta/OPT)/(k log k), k))$.
Dual-tree algorithms are a widely used class of branch-and-bound algorithms. Unfortunately, developing dual-tree algorithms for use with different trees and problems is often complex and burdensome. We introduce a four-part logical split: the tree, the traversal, the point-to-point base case, and the pruning rule. We provide a meta-algorithm which allows development of dual-tree algorithms in a tree-independent manner and easy extension to entirely new types of trees. Representations are provided for five common algorithms; for k-nearest neighbor search, this leads to a novel, tighter pruning bound. The meta-algorithm also allows straightforward extensions to massively parallel settings.
Optimal caching of files in a content distribution network (CDN) is a problem of fundamental and growing commercial interest. Although many different caching algorithms are in use today, the fundamental performance limits of network caching algorithms from an online learning point-of-view remain poorly understood to date. In this paper, we resolve this question in the following two settings: (1) a single user connected to a single cache, and (2) a set of users and a set of caches interconnected through a bipartite network. Recently, an online gradient-based coded caching policy was shown to enjoy sub-linear regret. However, due to the lack of known regret lower bounds, the question of the optimality of the proposed policy was left open. In this paper, we settle this question by deriving tight non-asymptotic regret lower bounds in both of the above settings. In addition to that, we propose a new Follow-the-Perturbed-Leader-based uncoded caching policy with near-optimal regret. Technically, the lower-bounds are obtained by relating the online caching problem to the classic probabilistic paradigm of balls-into-bins. Our proofs make extensive use of a new result on the expected load in the most populated half of the bins, which might also be of independent interest. We evaluate the performance of the caching policies by experimenting with the popular MovieLens dataset and conclude the paper with design recommendations and a list of open problems.
We consider two generalizations of the classical weighted paging problem that incorporate the notion of delayed service of page requests. The first is the (weighted) Paging with Time Windows (PageTW) problem, which is like the classical weighted paging problem except that each page request only needs to be served before a given deadline. This problem arises in many practical applications of online caching, such as the deadline I/O scheduler in the Linux kernel and video-on-demand streaming. The second, and more general, problem is the (weighted) Paging with Delay (PageD) problem, where the delay in serving a page request results in a penalty being assessed to the objective. This problem generalizes the caching problem to allow delayed service, a line of work that has recently gained traction in online algorithms (e.g., Emek et al. STOC 16, Azar et al. STOC 17, Azar and Touitou FOCS 19). We give $O(log klog n)$-competitive algorithms for both the PageTW and PageD problems on $n$ pages with a cache of size $k$. This significantly improves on the previous best bounds of $O(k)$ for both problems (Azar et al. STOC 17). We also consider the offline PageTW and PageD problems, for which we give $O(1)$ approximation algorithms and prove APX-hardness. These are the first results for the offline problems; even NP-hardness was not known before our work. At the heart of our algorithms is a novel hitting-set LP relaxation of the PageTW problem that overcomes the $Omega(k)$ integrality gap of the natural LP for the problem. To the best of our knowledge, this is the first example of an LP-based algorithm for an online algorithm with delays/deadlines.
With similarity-based content delivery, the request for a content can be satisfied by delivering a related content under a dissimilarity cost. This letter addresses the joint optimization of caching and similarity-based delivery decisions across a network so as to minimize the weighted sum of average delay and dissimilarity cost. A convergent alternate gradient descent ascent algorithm is first introduced for an offline scenario with prior knowledge of the request rates, and then extended to an online setting. Numerical results validate the advantages of the approach with respect to standard per-cache solutions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا