No Arabic abstract
Optimal caching of files in a content distribution network (CDN) is a problem of fundamental and growing commercial interest. Although many different caching algorithms are in use today, the fundamental performance limits of network caching algorithms from an online learning point-of-view remain poorly understood to date. In this paper, we resolve this question in the following two settings: (1) a single user connected to a single cache, and (2) a set of users and a set of caches interconnected through a bipartite network. Recently, an online gradient-based coded caching policy was shown to enjoy sub-linear regret. However, due to the lack of known regret lower bounds, the question of the optimality of the proposed policy was left open. In this paper, we settle this question by deriving tight non-asymptotic regret lower bounds in both of the above settings. In addition to that, we propose a new Follow-the-Perturbed-Leader-based uncoded caching policy with near-optimal regret. Technically, the lower-bounds are obtained by relating the online caching problem to the classic probabilistic paradigm of balls-into-bins. Our proofs make extensive use of a new result on the expected load in the most populated half of the bins, which might also be of independent interest. We evaluate the performance of the caching policies by experimenting with the popular MovieLens dataset and conclude the paper with design recommendations and a list of open problems.
We study the multi-user scheduling problem for minimizing the Age of Information (AoI) in cellular wireless networks under stationary and non-stationary regimes. We derive fundamental lower bounds for the scheduling problem and design efficient online policies with provable performance guarantees. In the stationary setting, we consider the AoI optimization problem for a set of mobile users travelling around multiple cells. In this setting, we propose a scheduling policy and show that it is $2$-optimal. Next, we propose a new adversarial channel model for studying the scheduling problem in non-stationary environments. For $N$ users, we show that the competitive ratio of any online scheduling policy in this setting is at least $Omega(N)$. We then propose an online policy and show that it achieves a competitive ratio of $O(N^2)$. Finally, we introduce a relaxed adversarial model with channel state estimations for the immediate future. We propose a heuristic model predictive control policy that exploits this feature and compare its performance through numerical simulations.
In a Fog Radio Access Network (F-RAN) architecture, edge nodes (ENs), such as base stations, are equipped with limited-capacity caches, as well as with fronthaul links that can support given transmission rates from a cloud processor. Existing information-theoretic analyses of content delivery in F-RANs have focused on offline caching with separate content placement and delivery phases. In contrast, this work considers an online caching set-up, in which the set of popular files is time-varying and both cache replenishment and content delivery can take place in each time slot. The analysis is centered on the characterization of the long-term Normalized Delivery Time (NDT), which captures the temporal dependence of the coding latencies accrued across multiple time slots in the high signal-to- noise ratio regime. Online caching and delivery schemes based on reactive and proactive caching are investigated, and their performance is compared to optimal offline caching schemes both analytically and via numerical results.
We consider the coded caching problem with an additional privacy constraint that a user should not get any information about the demands of the other users. We first show that a demand-private scheme for $N$ files and $K$ users can be obtained from a non-private scheme that serves only a subset of the demands for the $N$ files and $NK$ users problem. We further use this fact to construct a demand-private scheme for $N$ files and $K$ users from a particular known non-private scheme for $N$ files and $NK-K+1$ users. It is then demonstrated that, the memory-rate pair $(M,min {N,K}(1-M/N))$, which is achievable for non-private schemes with uncoded transmissions, is also achievable under demand privacy. We further propose a scheme that improves on these ideas by removing some redundant transmissions. The memory-rate trade-off achieved using our schemes is shown to be within a multiplicative factor of 3 from the optimal when $K < N$ and of 8 when $Nleq K$. Finally, we give the exact memory-rate trade-off for demand-private coded caching problems with $Ngeq K=2$.
This work investigates the problem of demand privacy against colluding users for shared-link coded caching systems, where no subset of users can learn any information about the demands of the remaining users. The notion of privacy used here is stronger than similar notions adopted in past work and is motivated by the practical need to insure privacy regardless of the file distribution. Two scenarios are considered: Single File Retrieval (SFR) and Linear Function Retrieval (LFR), where in the latter case each user demands an arbitrary linear combination of the files at the server. The main contributions of this paper are a novel achievable scheme for LFR, referred as privacy key scheme, and a new information theoretic converse bound for SFR. Clearly, being SFR a special case of LFR, an achievable scheme for LFR works for SFR as well, and a converse for SFR is a valid converse for LFR as well. By comparing the performance of the achievable scheme with the converse bound derived in this paper (for the small cache size regime) and existing converse bounds without privacy constraints (in the remaining memory regime), the communication load of the privacy key scheme turns out to be optimal to within a constant multiplicative gap in all parameter regimes. Numerical results show that the new privacy key scheme outperforms in some regime known schemes based on the idea of virtual users, which also satisfy the stronger notion of user privacy against colluding users adopted here. Moreover, the privacy key scheme enjoys much lower subpacketization than known schemes based on virtual users.
The integrated sensing and communication (ISAC), in which the sensing and communication share the same frequency band and hardware, has emerged as a key technology in future wireless systems. Early works on ISAC have been focused on the design, analysis and optimization of practical ISAC technologies for various ISAC systems. While this line of works are necessary, it is equally important to study the fundamental limits of ISAC in order to understand the gap between the current state-of-the-art technologies and the performance limits, and provide useful insights and guidance for the development of better ISAC technologies that can approach the performance limits. In this paper, we aim to provide a comprehensive survey for the current research progress on the fundamental limits of ISAC. Particularly, we first propose a systematic classification method for both traditional radio sensing (such as radar sensing and wireless localization) and ISAC so that they can be naturally incorporated into a unified framework. Then we summarize the major performance metrics and bounds used in sensing, communications and ISAC, respectively. After that, we present the current research progresses on fundamental limits of each class of the traditional sensing and ISAC systems. Finally, the open problems and future research directions are discussed.