Do you want to publish a course? Click here

The electron-phonon coupling strength at metal surfaces directly determined from the Helium atom scattering Debye-Waller factor

84   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

A new quantum-theoretical derivation of the elastic and inelastic scattering probability of He atoms from a metal surface, where the energy and momentum exchange with the phonon gas can only occur through the mediation of the surface free-electron density, shows that the Debye-Waller exponent is directly proportional to the electron-phonon mass coupling constant $lambda$. The comparison between the values of $lambda$ extracted from existing data on the Debye-Waller factor for various metal surfaces and the $lambda$ values known from literature indicates a substantial agreement, which opens the possibility of directly extracting the electron-phonon coupling strength in quasi-2D conducting systems from the temperature or incident energy dependence of the elastic Helium atom scattering intensities.



rate research

Read More

We have studied the topological insulator Bi$_2$Te$_3$(111) by means of helium atom scattering. The average electron-phonon coupling $lambda$ of Bi$_2$Te$_3$(111) is determined by adapting a recently developed quantum-theoretical derivation of the helium scattering probabilities to the case of degenerate semiconductors. Based on the Debye-Waller attenuation of the elastic diffraction peaks of Bi$_2$Te$_3$(111), measured at surface temperatures between $110~mbox{K}$ and $355~mbox{K}$, we find $lambda$ to be in the range of $0.04-0.11$. This method allows to extract a correctly averaged $lambda$ and to address the discrepancy between previous studies. The relatively modest value of $lambda$ is not surprising even though some individual phonons may provide a larger electron-phonon interaction. Furthermore, the surface Debye temperature of Bi$_2$Te$_3$(111) is determined as ${rm Theta}_D = (81pm6)~mbox{K}$. The electronic surface corrugation was analysed based on close-coupling calculations. By using a corrugated Morse potential a peak-to-peak corrugation of 9% of the lattice constant is obtained.
Recent theory has demonstrated that the value of the electron-phonon coupling strength $lambda$ can be extracted directly from the thermal attenuation (Debye-Waller factor) of Helium atom scattering reflectivity. This theory is here extended to multivalley semimetal systems and applied to the case of graphene on different metal substrates and graphite. It is shown that $lambda$ rapidly increases for decreasing graphene-substrate binding strength. Two different calculational models are considered which produce qualitatively similar results for the dependence of $lambda$ on binding strength. These models predict, respectively, values of $lambda_{HAS} = 0.89$ and 0.32 for a hypothetical flat free-standing single-layer graphene with cyclic boundary conditions. The method is suitable for analysis and characterization of not only the graphene overlayers considered here, but also other layered systems such as twisted graphene bilayers.
79 - Matthias J. Graf 2007
The Debye-Waller factor has been calculated for stabilized delta-phase plutonium with 5% aluminum. A quasi-harmonic Born-von Karman force model with temperature dependent phonon frequencies was used to calculate the mean-square thermal atomic displacement from absolute zero to 800 K. Implementation of the observed anomalous softening of the long wavelength phonons with increasing temperature cannot account for the softening of the measured thermal parameter at high temperatures nor for its rather high value at low temperatures. The implications for diffraction measurements on delta-phase stabilized plutonium alloys are discussed.
He atom scattering has been demonstrated to be a sensitive probe of the electron-phonon interaction parameter $lambda$ at metal and metal-overlayer surfaces. Here it is shown that the theory linking $lambda$ to the thermal attenuation of atom scattering spectra (the Debye-Waller factor), can be applied to topological semimetal surfaces, like the quasi-one dimensional charge-density-wave system Bi(114) and the layered pnictogen chalcogenides.
213 - B. Arnaud , Y. Giret 2012
By means of first principles calculations, we computed the effective electron-phonon coupling constant $G_0$ governing the electron cooling in photoexcited bismuth. $G_0$ strongly increases as a function of electron temperature, which can be traced back to the semi-metallic nature of bismuth. We also used a thermodynamical model to compute the time evolution of both electron and lattice temperatures following laser excitation. Thereby, we simulated the time evolution of (1 -1 0), (-2 1 1) and (2 -2 0) Bragg peak intensities measured by Sciaini et al [Nature 458, 56 (2009)] in femtosecond electron diffraction experiments. The effect of the electron temperature on the Debye-Waller factors through the softening of all optical modes across the whole Brillouin zone turns out to be crucial to reproduce the time evolution of these Bragg peak intensities.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا