No Arabic abstract
Feynman-Hibbs (FH) effective potentials constitute an appealing approach for investigations of many-body systems at thermal equilibrium since they allow us to easily include quantum corrections within standard classical simulations. In this work we apply the FH formulation to the study of Ne$_N$-coronene clusters ($N=$ 1-4, 14) in the 2-14 K temperature range. Quadratic (FH2) and quartic (FH4) contributions to the effective potentials are built upon Ne-Ne and Ne-coronene analytical potentials. In particular, a new corrected expression for the FH4 effective potential is reported. FH2 and FH4 cluster energies and structures -obtained from energy optimization through a basin-hoping algorithm as well as classical Monte Carlo simulations- are reported and compared with reference path integral Monte Carlo calculations. For temperatures $T> 4$ K, both FH2 and FH4 potentials are able to correct the purely classical calculations in a consistent way. However, the FH approach fails at lower temperatures, especially the quartic correction. It is thus crucial to assess the range of applicability of this formulation and, in particular, to apply the FH4 potentials with great caution. A simple model of $N$ isotropic harmonic oscillators allows us to propose a means of estimating the cut-off temperature for the validity of the method, which is found to increase with the number of atoms adsorbed on the coronene molecule.
We present structure calculations of neutral and singly ionized Mg clusters of up to 30 atoms, as well as Na clusters of up to 10 atoms. The calculations have been performed using density functional theory (DFT) within the local (spin-)density approximation, ion cores are described by pseudopotentials. We have utilized a new algorithm for solving the Kohn-Sham equations that is formulated entirely in coordinate space and, thus, permits straightforward control of the spatial resolution. Our numerical method is particularly suitable for modern parallel computer architectures; we have thus been able to combine an unrestricted simulated annealing procedure with electronic structure calculations of high spatial resolution, corresponding to a plane-wave cutoff of 954eV for Mg. We report the geometric structures of the resulting ground-state configurations and a few low-lying isomers. The energetics and HOMO-LUMO gaps of the ground-state configurations are carefully examined and related to their stability properties. No evidence for a non-metal to metal transition in neutral and positively charged Mg clusters is found in the regime of ion numbers examined here.
The water-graphite interaction potential proposed recently (Gonzalez et al.emph{J. Phys. Chem. C} textbf{2007}, emph{111}, 14862), the three TIP$N$P ($N=3,:4,:5$) water-water interaction models, and basin-hopping global optimization are used to find the likely candidates for the global potential energy minima of (H$_{2}$O)$_{n}$ clusters with $nleq21$ on the (0001)-surface of graphite and to perform a comparative study of these minima. We show that, except for the smaller clusters ($n<6$), for which ab-initio results are available, the three water-water potential models provide mostly inequivalent conformations. While TIP3P seems to favor monolayer water structures for $n<18$, TIP4P and TIP5P favor bilayer or volume structures for $n>6$. These $n$ values determine the threshold of dominance of the hydrophobic nature of the water-graphite interaction at the nanoscopic scale for these potential models.
We present the first measurement of a one-photon extreme-ultraviolet photoelectron spectrum (PES) of molecules embedded in superfluid helium nanodroplets. The PES of coronene is compared to gas phase and the solid phase PES, and to electron spectra of embedded coronene generated by charge transfer and Penning ionization through ionized or excited helium. The resemblence of the He-droplet PES to the one of the solid phase indicates that mostly Cor clusters are photoionized. In contrast, the He-droplet Penning-ionization electron spectrum is nearly structureless, indicating strong perturbation of the ionization process by the He droplet. These results pave the way to extreme ultraviolet photoelectron spectroscopy (UPS) of clusters and molecular complexes embedded in helium nanodroplets.
Most theoretical investigations about titanium oxide clusters focus on (TiO$_2$)$_n$. However, many Ti$_n$O$_m$ clusters with $m eq 2n$ are produced experimentally. In this work, first-principles calculations are performed to probe the evolution of Ti$_n$O$_m$ clusters. Our investigations show that for $n=3$-$11$, there exist one relatively stable specie; while for $n=12$-$18$, there are two relatively stable species: Ti-rich and O-rich species. HOMO-LOMO calculations show that the gap can be tuned by changing the size and configurations of Ti$_n$O$_m$ clusters. Our investigation provides insights into the evolution of cluster-to-bulk process in titanium oxide.
We report ground state energies and structural properties for small helium clusters (4He) containing an H- impurity computed by means of variational and diffusion Monte Carlo methods. Except for 4He_2H- that has a noticeable contribution from collinear geometries where the H- impurity lies between the two 4He atoms, our results show that our 4He_NH- clusters have a compact 4He_N subsystem that binds the H- impurity on its surface. The results for $Ngeq 3$ can be interpreted invoking the different features of the minima of the He-He and He-H- interaction potentials.