Do you want to publish a course? Click here

Revisiting the lifetime estimate of large presolar grains in the interstellar medium

64   0   0.0 ( 0 )
 Added by Hiroyuki Hirashita
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Some very large (>0.1 um) presolar grains are sampled in meteorites. We reconsider the lifetime of very large grains (VLGs) in the interstellar medium focusing on interstellar shattering caused by turbulence-induced large velocity dispersions. This path has never been noted as a dominant mechanism of destruction. We show that, if interstellar shattering is the main mechanism of destruction of VLGs, their lifetime is estimated to be $gtrsim 10^8$ yr; in particular, very large SiC grains can survive cosmic-ray exposure time. However, most presolar SiC grains show residence times significantly shorter than 1 Gyr, which may indicate that there is a more efficient mechanism than shattering in destroying VLGs, or that VLGs have larger velocity dispersions than 10 km s$^{-1}$. We also argue that the enhanced lifetime of SiC relative to graphite can be the reason why we find SiC among $mu$m-sized presolar grains, while the abundance of SiC in the normal interstellar grains is much lower than graphite.



rate research

Read More

The Interstellar Medium (ISM) comprises gases at different temperatures and densities, including ionized, atomic, molecular species, and dust particles. The neutral ISM is dominated by neutral hydrogen and has ionization fractions up to 8%. The concentration of chemical elements heavier than helium (metallicity) spans orders of magnitudes in Galactic stars, because they formed at different times. Instead, the gas in the Solar vicinity is assumed to be well mixed and have Solar metallicity in traditional chemical evolution models. The ISM chemical abundances can be accurately measured with UV absorption-line spectroscopy. However, the effects of dust depletion, which removes part of the metals from the observable gaseous phase and incorporates it into solid grains, have prevented, until recently, a deeper investigation of the ISM metallicity. Here we report the dust-corrected metallicity of the neutral ISM measured towards 25 stars in our Galaxy. We find large variations in metallicity over a factor of 10 (with an average 55 +/- 7% Solar and standard deviation 0.28 dex) and including many regions of low metallicity, down to ~17% Solar and possibly below. Pristine gas falling onto the disk in the form of high-velocity clouds can cause the observed chemical inhomogeneities on scales of tens of pc. Our results suggest that this low-metallicity accreting gas does not efficiently mix into the ISM, which may help us understand metallicity deviations in nearby coeval stars.
Turbulence is ubiquitous in the insterstellar medium and plays a major role in several processes such as the formation of dense structures and stars, the stability of molecular clouds, the amplification of magnetic fields, and the re-acceleration and diffusion of cosmic rays. Despite its importance, interstellar turbulence, alike turbulence in general, is far from being fully understood. In this review we present the basics of turbulence physics, focusing on the statistics of its structure and energy cascade. We explore the physics of compressible and incompressible turbulent flows, as well as magnetized cases. The most relevant observational techniques that provide quantitative insights of interstellar turbulence are also presented. We also discuss the main difficulties in developing a three-dimensional view of interstellar turbulence from these observations. Finally, we briefly present what could be the the main sources of turbulence in the interstellar medium.
In the past decade, Astrochemistry has witnessed an impressive increase in the number of detections of complex organic molecules. Some of these species are of prebiotic interest such as glycolaldehyde, the simplest sugar, or amino acetonitrile, a possible precursor of glycine. Recently, we have reported the detection of two new nitrogen-bearing complex organics, glycolonitrile and Z-cyanomethanimine, known to be intermediate species in the formation process of ribonucleotides within theories of a primordial ribonucleic acid (RNA)-world for the origin of life. In this paper, we present deep and high-sensitivity observations toward two of the most chemically rich sources in the Galaxy: a Giant Molecular Cloud in the center of the Milky Way (G+0.693-0.027) and a proto-Sun (IRAS16293-2422 B). Our aim is to explore whether the key precursors considered to drive the primordial RNA-world chemistry, are also found in space. Our high-sensitivity observations reveal that urea is present in G+0.693-0.027 with an abundance of about 5x10-11. This is the first detection of this prebiotic species outside a star-forming region. Urea remains undetected toward the proto-Sun IRAS16293-2422 B (upper limit to its abundance of less than 2x10-11). Other precursors of the RNA-world chemical scheme such as glycolaldehyde or cyanamide are abundant in space, but key prebiotic species such as 2- amino-oxazole, glyceraldehyde or dihydroxyacetone are not detected in either source. Future more sensitive observations targeting the brightest transitions of these species will be needed to disentangle whether these large prebiotic organics are certainly present in space.
Water ice has a strong spectral feature at a wavelength of approximately $3~mu$m, which plays a vital role in our understanding of the icy universe. In this study, we investigate the scattering polarization of this water-ice feature. The linear polarization degree of light scattered by $mu$m-sized icy grains is known to be enhanced at the ice band; however, the dependence of this polarization enhancement on various grain properties is unclear. We find that the enhanced polarization at the ice band is sensitive to the presence of $mu$m-sized grains as well as their ice abundance. We demonstrate that this enhancement is caused by the high absorbency of the water-ice feature, which attenuates internal scattering and renders the surface reflection dominant over internal scattering. Additionally, we compare our models with polarimetric observations of the low-mass protostar L1551 IRS 5. Our results show that scattering by a maximum grain radius of a few microns with a low water-ice abundance is consistent with observations. Thus, scattering polarization of the water-ice feature is a useful tool for characterizing ice properties in various astronomical environments.
236 - Laurent Pagani 2011
Cold molecular clouds are the birthplaces of stars and planets, where dense cores of gas collapse to form protostars. The dust mixed in these clouds is thought to be made of grains of an average size of 0.1 micrometer. We report the widespread detection of the coreshine effect as a direct sign of the existence of grown, micrometer-sized dust grains. This effect is seen in half of the cores we have analyzed in our survey, spanning all Galactic longitudes, and is dominated by changes in the internal properties and local environment of the cores, implying that the coreshine effect can be used to constrain fundamental core properties such as the three-dimensional density structure and ages and also the grain characteristics themselves.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا