Do you want to publish a course? Click here

The calibration and electron energy reconstruction of the BGO ECAL of the DAMPE detector

241   0   0.0 ( 0 )
 Added by Zhiyong Zhang
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The DArk Matter Particle Explorer (DAMPE) is a space experiment designed to search for dark matter indirectly by measuring the spectra of photons, electrons, and positrons up to 10 TeV. The BGO electromagnetic calorimeter (ECAL) is its main sub-detector for energy measurement. In this paper, the instrumentation and development of the BGO ECAL is briefly described. The calibration on the ground, including the pedestal, minimum ionizing particle (MIP) peak, dynode ratio, and attenuation length with the cosmic rays and beam particles is discussed in detail. Also, the energy reconstruction results of the electrons from the beam test are presented.



rate research

Read More

The DArk Matter Particle Explorer (DAMPE) is an orbital experiment aiming at searching for dark matter indirectly by measuring the spectra of photons, electrons and positrons originating from deep space. The BGO electromagnetic calorimeter is one of the key sub-detectors of the DAMPE, which is designed for high energy measurement with a large dynamic range from 5 GeV to 10 TeV. In this paper, some methods for energy correction are discussed and tried, in order to reconstruct the primary energy of the incident electrons. Different methods are chosen for the appropriate energy ranges. The results of Geant4 simulation and beam test data (at CERN) are presented.
DAMPE is a space-based mission designed as a high energy particle detector measuring cosmic-rays and $gamma-$rays which was successfully launched on Dec.17, 2015. The BGO electromagnetic calorimeter is one of the key sub-detectors of DAMPE for energy measurement of electromagnetic showers produced by $e^{pm}/{gamma}$. Due to energy loss in dead material and energy leakage outside the calorimeter, the deposited energy in BGO underestimates the primary energy of incident $e^{pm}/{gamma}$. In this paper, based on detailed MC simulations, a parameterized energy correction method using the lateral and longitudinal information of electromagnetic showers has been studied and verified with data of electron beam test at CERN. The measurements of energy linearity and resolution are significantly improved by applying this correction method for electromagnetic showers.
A BGO electromagnetic calorimeter (ECAL) is built for the DArk Matter Particle Explorer (DAMPE) mission. The effect of temperature on the BGO ECAL was investigated with a thermal vacuum experiment. The light output of a BGO crystal depends on temperature significantly. The temperature coefficient of each BGO crystal bar has been calibrated, and a correction method is also presented in this paper.
An onboard calibration circuit has been designed for the front-end electronics (FEE) of DAMPE BGO Calorimeter. It is mainly composed of a 12 bit DAC, an operation amplifier and an analog switch. Test results showed that a dynamic range of 0 ~ 30 pC with a precision of 5 fC was achieved, which meets the requirements of the front-end electronics. Furthermore, it is used to test the trigger function of the FEEs. The calibration circuit has been implemented and verified by all the environmental tests for both Qualification Model and Flight Model of DAMPE. The DAMPE satellite will be launched at the end of 2015 and the calibration circuit will perform onboard calibration in space.
118 - F. Ghio , B. Girolami , M. Capogni 1997
We describe the electromagnetic calorimeter built for the GRAAL apparatus at the ESRF. Its monitoring system is presented in detail. Results from tests and the performance obtained during the first GRAAL experiments are given. The energy calibration accuracy and stability reached is a small fraction of the intrinsic detector resolution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا