Do you want to publish a course? Click here

Ghost inflation and de Sitter entropy

84   0   0.0 ( 0 )
 Added by Sadra Jazayeri Mr.
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the setup of ghost condensation model the generalized second law of black hole thermodynamics can be respected under a radiatively stable assumption that couplings between the field responsible for ghost condensate and matter fields such as those in the Standard Model are suppressed by the Planck scale. Since not only black holes but also cosmology are expected to play important roles towards our better understanding of gravity, we consider a cosmological setup to test the theory of ghost condensation. In particular we shall show that the de Sitter entropy bound proposed by Arkani-Hamed, et.al. is satisfied if ghost inflation happened in the early epoch of our universe and if there remains a tiny positive cosmological constant in the future infinity. We then propose a notion of cosmological Page time after inflation.



rate research

Read More

The de Sitter constraint on the space of effective scalar field theories consistent with superstring theory provides a lower bound on the slope of the potential of a scalar field which dominates the evolution of the Universe, e.g., a hypothetical inflaton field. Whereas models of single scalar field inflation with a canonically normalized field do not obey this constraint, it has been claimed recently in the literature that models of warm inflation can be made compatible with it in the case of large dissipation. The de Sitter constraint is known to be derived from entropy considerations. Since warm inflation necessary involves entropy production, it becomes necessary to determine how this entropy production will affect the constraints imposed by the swampland conditions. Here, we generalize these entropy considerations to the case of warm inflation and show that the condition on the slope of the potential remains essentially unchanged and is, hence, robust even in the warm inflation dynamics. We are then able to conclude that models of warm inflation indeed can be made consistent with the swampland criteria.
We study the cosmological properties of a metastable de Sitter vacuum obtained recently in the framework of type IIB flux compactifications in the presence of three D7-brane stacks, based on perturbative quantum corrections at both world-sheet and string loop level that are dominant at large volume and weak coupling. In the simplest case, the model has one effective parameter controlling the shape of the potential of the inflaton which is identified with the volume modulus. The model provides a phenomenological successful small-field inflation for a value of the parameter that makes the minimum very shallow and near the maximum. The horizon exit is close to the inflection point while most of the required e-folds of the Universe expansion are generated near the minimum, with a prediction for the ratio of tensor-to-scalar primordial fluctuations $r sim 4 times 10^{-4}$. Despite its shallowness, the minimum turns out to be practically stable. We show that it can decay only through the Hawking-Moss instanton leading to an extremely long decay rate. Obviously, in order to end inflation and obtain a realistic model, new low-energy physics is needed around the minimum, at intermediate energy scales of order $10^{12}$ GeV. An attractive possibility is by introducing a waterfall field within the framework of hybrid inflation.
141 - Marco Scalisi 2015
We provide a unified description of cosmological $alpha$-attractors and late-time acceleration, in excellent agreement with the latest Planck data. Our construction involves two superfields playing distinctive roles: one is the dynamical field and its evolution determines inflation and dark energy, the other is nilpotent and responsible for a landscape of vacua and supersymmetry breaking. We prove that the attractor nature of the theory is enhanced when combining the two sectors: cosmological attractors are very stable with respect to any possible value of the cosmological constant and, interestingly, to any generic coupling of the inflationary sector with the field responsible for uplifting. Finally, as related result, we show how specific couplings generate an arbitrary inflaton potential in a supergravity framework with varying Kahler curvature.
115 - Alek Bedroya 2020
Motivated by the coincidence of scrambling time in de Sitter and maximum lifetime given by the $textit{Trans-Planckian Censorship Conjecture}$ (TCC), we study the relation between the de Sitter complementarity and the Swampland conditions. We study thermalization in de Sitter space from different perspectives and show that TCC implies de Sitter space cannot live long enough to be considered a thermal background. We also revisit $alpha$-vacua in light of this work and show that TCC imposes multiple initial condition/fine-tuning problems on any conventional inflationary scenario.
Calculating the quantum evolution of a de Sitter universe on superhorizon scales is notoriously difficult. To address this challenge, we introduce the Soft de Sitter Effective Theory (SdSET). This framework holds for superhorizon modes whose comoving momentum is far below the UV scale, which is set by the inverse comoving horizon. The SdSET is formulated using the same approach that yields the Heavy Quark Effective Theory. The degrees of freedom that capture the long wavelength dynamics are identified with the growing and decaying solutions to the equations of motion. The operator expansion is organized using a power counting scheme, and loops can be regulated while respecting the low energy symmetries. For massive quantum fields in a fixed de Sitter background, power counting implies that all interactions beyond the horizon are irrelevant. Alternatively, if the fields are very light, the leading interactions are at most marginal, and resumming the associated logarithms using (dynamical) renormalization group techniques yields the evolution equation for canonical stochastic inflation. The SdSET is also applicable to models where gravity is dynamical, including inflation. In this case, diffeomorphism invariance ensures that all interactions are irrelevant, trivially implying the all-orders conservation of adiabatic density fluctuations and gravitational waves. We briefly touch on the application to slow-roll eternal inflation by identifying novel relevant operators. This work serves to demystify many aspects of perturbation theory outside the horizon, and has a variety of applications to problems of cosmological interest.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا