Do you want to publish a course? Click here

Broadband multimode fiber spectrometer

132   0   0.0 ( 0 )
 Added by Seng Fatt Liew
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

A general-purpose all-fiber spectrometer is demonstrated to overcome the trade-off between spectral resolution and bandwidth. By integrating a wavelength division multiplexer with five multimode optical fibers, we have achieved 100 nm bandwidth with 0.03 nm resolution at wavelength 1500 nm. An efficient algorithm is developed to reconstruct the spectrum from the speckle pattern produced by interference of guided modes in the multimode fibers. Such algorithm enables a rapid, accurate reconstruction of both sparse and dense spectra in the presence of noise.



rate research

Read More

In the past decade superconducting nanowire single photon detectors (SNSPDs) have gradually become an indispensable part of any demanding quantum optics experiment. Until now, most SNSPDs are coupled to single-mode fibers. SNSPDs coupled to multimode fibers have shown promising efficiencies but are yet to achieve high time resolution. For a number of applications ranging from quantum nano-photonics to bio-optics, high efficiency and high time-resolution are desired at the same time. In this paper, we demonstrate the role of polarization on the efficiency of multi-mode fiber coupled detectors, and show how it can be addressed. We fabricated high performance 20, 25 and 50{mu}m diameter detectors targeted for visible, near infrared, and telecom wavelengths. A custom-built setup was used to simulate realistic experiments with randomized modes in the fiber. We simultaneously achieved system efficiency >80% and time resolution <20 ps and made large detectors that offer outstanding performances.
Optical cavities provide high sensitivity to dispersion since their resonance frequencies depend on the index of refraction. We present a direct, broadband, and accurate measurement of the modes of a high finesse cavity using an optical frequency comb and a mechanical Fourier transform spectrometer with a kHz-level resolution. We characterize 16000 cavity modes spanning 16 THz of bandwidth in terms of center frequency, linewidth, and amplitude. We retrieve the group delay dispersion of the cavity mirror coatings and pure N${_2}$ with 0.1 fs${^2}$ precision and 1 fs${^2}$ accuracy, as well as the refractivity of the 3{ u}1+{ u}3 absorption band of CO${_2}$ with 5 x 10${^{-12}}$ precision. This opens up for broadband refractive index metrology and calibration-free spectroscopy of entire molecular bands.
We experimentally demonstrate a simple method to measure the biphoton joint spectrum by mapping the spectral information onto the temporal domain using a dispersive medium. Various top-hat spectral filters are used to limit the spectral (and hence, temporal) extent of the broadband downconversion photons measured. The sharp edges of the spectral filters are utilized as spectral markers for dispersion characterization of the dispersive medium. This method allows dispersion characterization and joint spectral measurement to be completed simultaneously. The joint spectrum (which extends beyond 100 nm, centered about 1.5 micron) of the type-II downconverted photon pairs generated from a poled optical fiber is obtained with this method.
We build a resonant fiber optic gyro based on Kagome hollow-core fiber. A semi-bulk cavity architecture based on a 18-m-long Kagome fiber permits to achieve a cavity finesse of 23 with a resonance linewidth of 700 kHz. An optimized Pound-Drever-Hall servo-locking scheme is used to probe the cavity in reflection. Closed-loop operation of the gyroscope permits to reach an angular random walk as small as 0.004$^circ/sqrt{mathrm{h}}$ and a bias stability of 0.45$^circ$/h over 0.5 s of integration time.
Recovering the wavelength from disordered speckle patterns has become an exciting prospect as a wavelength measurement method due to its high resolution and simple design. In previous studies, panel cameras have been used to detect the subtle differences between speckle patterns. However, the volume, bandwidth, sensitivity, and cost (in non-visible bands) associated with panel cameras have hindered their utility in broader applications, especially in high speed and low-cost measurements. In this work, we broke the limitations imposed by panel cameras by using a quadrant detector (QD) to capture the speckle images. In the scheme of QD detection, speckle images are directly filtered by convolution, where the kernel is equal to one quarter of a speckle pattern. First, we proposed an up-sampling algorithm to pre-process the QD data. Then a new convolution neural network (CNN) based algorithm, shallow residual network (SRN), was proposed to train the up-sampled images. The experimental results show that a resolution of 4 fm (~ 0.5 MHz) was achieved at 1550nm with an updating speed of ~ 1 kHz. More importantly, the SRN shows excellent robustness. The wavelength can be precisely reconstructed from raw QD data without any averaging, even where there exists apparent noise. The low-cost, simple structure, high speed and robustness of this design promote the speckle-based wavemeter to the industrial grade. In addition, without the restriction of panel cameras, it is believed that this wavemeter opens new routes in many other fields, such as distributed optical fiber sensors, optical communications, and laser frequency stabilization.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا