No Arabic abstract
One of the most important problems in complex networks is how to detect metadata groups accurately. The main challenge lies in the fact that traditional structural communities do not always capture the intrinsic features of metadata groups. Motivated by the observation that metadata groups in PPI networks tend to consist of an abundance of interacting triad motifs, we define a 2-club substructure with diameter 2 which possessing triad-rich property to describe a metadata group. Based on the triad-rich substructure, we design a DIVision Algorithm using our proposed edge Niche Centrality DIVANC to detect metadata groups effectively in complex networks. We also extend DIVANC to detect overlapping metadata groups by proposing a simple 2-hop overlapping strategy. To verify the effectiveness of triad-rich substructures, we compare DIVANC with existing algorithms on PPI networks, LFR synthetic networks and football networks. The experimental results show that DIVANC outperforms most other algorithms significantly and, in particular, can detect sparse metadata groups.
How to identify influential nodes in social networks is of theoretical significance, which relates to how to prevent epidemic spreading or cascading failure, how to accelerate information diffusion, and so on. In this Letter, we make an attempt to find emph{effective multiple spreaders} in complex networks by generalizing the idea of the coloring problem in graph theory to complex networks. In our method, each node in a network is colored by one kind of color and nodes with the same color are sorted into an independent set. Then, for a given centrality index, the nodes with the highest centrality in an independent set are chosen as multiple spreaders. Comparing this approach with the traditional method, in which nodes with the highest centrality from the emph{entire} network perspective are chosen, we find that our method is more effective in accelerating the spreading process and maximizing the spreading coverage than the traditional method, no matter in network models or in real social networks. Meanwhile, the low computational complexity of the coloring algorithm guarantees the potential applications of our method.
A bridge in a graph is an edge whose removal disconnects the graph and increases the number of connected components. We calculate the fraction of bridges in a wide range of real-world networks and their randomized counterparts. We find that real networks typically have more bridges than their completely randomized counterparts, but very similar fraction of bridges as their degree-preserving randomizations. We define a new edge centrality measure, called bridgeness, to quantify the importance of a bridge in damaging a network. We find that certain real networks have very large average and variance of bridgeness compared to their degree-preserving randomizations and other real networks. Finally, we offer an analytical framework to calculate the bridge fraction , the average and variance of bridgeness for uncorrelated random networks with arbitrary degree distributions.
In network science complex systems are represented as a mathematical graphs consisting of a set of nodes representing the components and a set of edges representing their interactions. The framework of networks has led to significant advances in the understanding of the structure, formation and function of complex systems. Social and biological processes such as the dynamics of epidemics, the diffusion of information in social media, the interactions between species in ecosystems or the communication between neurons in our brains are all actively studied using dynamical models on complex networks. In all of these systems, the patterns of connections at the individual level play a fundamental role on the global dynamics and finding the most important nodes allows one to better understand and predict their behaviors. An important research effort in network science has therefore been dedicated to the development of methods allowing to find the most important nodes in networks. In this short entry, we describe network centrality measures based on the notions of network traversal they rely on. This entry aims at being an introduction to this extremely vast topic, with many contributions from several fields, and is by no means an exhaustive review of all the literature about network centralities.
In this paper, we consider the problem of exploring structural regularities of networks by dividing the nodes of a network into groups such that the members of each group have similar patterns of connections to other groups. Specifically, we propose a general statistical model to describe network structure. In this model, group is viewed as hidden or unobserved quantity and it is learned by fitting the observed network data using the expectation-maximization algorithm. Compared with existing models, the most prominent strength of our model is the high flexibility. This strength enables it to possess the advantages of existing models and overcomes their shortcomings in a unified way. As a result, not only broad types of structure can be detected without prior knowledge of what type of intrinsic regularities exist in the network, but also the type of identified structure can be directly learned from data. Moreover, by differentiating outgoing edges from incoming edges, our model can detect several types of structural regularities beyond competing models. Tests on a number of real world and artificial networks demonstrate that our model outperforms the state-of-the-art model at shedding light on the structural features of networks, including the overlapping community structure, multipartite structure and several other types of structure which are beyond the capability of existing models.
The propagations of diseases, behaviors and information in real systems are rarely independent of each other, but they are coevolving with strong interactions. To uncover the dynamical mechanisms, the evolving spatiotemporal patterns and critical phenomena of networked coevolution spreading are extremely important, which provide theoretical foundations for us to control epidemic spreading, predict collective behaviors in social systems, and so on. The coevolution spreading dynamics in complex networks has thus attracted much attention in many disciplines. In this review, we introduce recent progress in the study of coevolution spreading dynamics, emphasizing the contributions from the perspectives of statistical mechanics and network science. The theoretical methods, critical phenomena, phase transitions, interacting mechanisms, and effects of network topology for four representative types of coevolution spreading mechanisms, including the coevolution of biological contagions, social contagions, epidemic-awareness, and epidemic-resources, are presented in detail, and the challenges in this field as well as open issues for future studies are also discussed.