Do you want to publish a course? Click here

Updates on the Studies of $N^*$ Structure with CLAS and the Prospects with CLAS12

78   0   0.0 ( 0 )
 Added by Victor Mokeev
 Publication date 2016
  fields
and research's language is English
 Authors V. I. Mokeev




Ask ChatGPT about the research

The recent results on $gamma_vpN^*$ electrocouplings from analyses of the data on exclusive meson electroproduction off protons measured with the CLAS detector at Jefferson Lab are presented. The impact of these results on the exploration of the excited nucleon state structure and non-perturbative strong interaction dynamics behind its formation is outlined. The future extension of these studies in the experiments with the CLAS12 detector in the upgraded Hall-B at JLab will provide for the first time $gamma_vpN^*$ electrocouplings of all prominent resonances at the still unexplored distance scales that correspond to extremely low (0.05 GeV$^2 < Q^2 <$ 0.5 GeV$^2$) and the highest photon virtualities (5.0 GeV$^2 < Q^2 <$ 12.0 GeV$^2$) ever achieved in the exclusive electroproduction measurements. The expected results will address the most important open problems of the Standard Model: on the nature of more than 98% of hadron mass, quark-gluon confinement and emergence of the excited nucleon state structure from the QCD Lagrangian, as well as allowing a search for the new states of hadron matter predicted from the first principles of QCD, the so-called hybrid baryons.



rate research

Read More

Studies of the spectrum of hadrons and their structure in experiments with electromagnetic probes offer unique insight into many facets of the strong interaction in the regime of large quark-gluon running coupling, {it i.e.} the regime of strong QCD. The experimental program within Hall~B at Jefferson Laboratory based on data acquired with the CLAS spectrometer using electron and photon beams with energies up to 6~GeV has already considerably extended the scope of research in hadron physics in joint efforts between experiment and phenomenological data analysis. Impressive progress in relating the hadron structure observables inferred from the data to the strong QCD mechanisms underlying hadron mass generation has been achieved in the past decade. These results will be considerably extended with data from the experimental program with the new CLAS12 spectrometer that has begun data taking using electron beams with energies up to 11~GeV. With this extended kinematic reach the structure of nucleon resonances will be probed at the highest photon virtualities ever achieved in the studies of exclusive electroproduction, which will allow for the exploration of the distance scale where $>$98% of light hadron mass emerges from QCD in the transition of the strong interaction from the regime of quark-gluon confinement to perturbative QCD.
The transition gamma_{v}pN^* amplitudes (electrocouplings) for prominent excited nucleon states obtained in a wide area of photon virtualities offer valuable information for the exploration of the N^* structure at different distances and allow us to access the complex dynamics of non-perturbative strong interaction. The current status in the studies of gamma_{v}pN^* electrocouplings from the data on exclusive meson electroproduction off protons measured with the CLAS detector at Jefferson Lab is presented. The impact of these results on exploration of the N^* structure is discussed.
We report on the first measurement of the F2 structure function of the neutron from semi-inclusive scattering of electrons from deuterium, with low-momentum protons detected in the backward hemisphere. Restricting the momentum of the spectator protons to < 100 MeV and their angles to < 100 degrees relative to the momentum transfer allows an interpretation of the process in terms of scattering from nearly on-shell neutrons. The F2n data collected cover the nucleon resonance and deep-inelastic regions over a wide range of Bjorken x for 0.65 < Q2 < 4.52 GeV2, with uncertainties from nuclear corrections estimated to be less than a few percent. These measurements provide the first determination of the neutron to proton structure function ratio F2n/F2p at 0.2 < x < 0.8 with little uncertainty due to nuclear effects.
71 - K. Park , M. Guidal , R.W. Gothe 2017
We report on the first measurement of cross sections for exclusive deeply virtual pion electroproduction off the proton, $e p to e^prime n pi^+$, above the resonance region at backward pion center-of-mass angles. The $varphi^*_{pi}$-dependent cross sections were measured, from which we extracted three combinations of structure functions of the proton. Our results are compatible with calculations based on nucleon-to-pion transition distribution amplitudes (TDAs) and shed new light on nucleon structure.
The cross section of the exclusive $eta$ electroproduction reaction $epto e^prime p^prime eta$ was measured at Jefferson Lab with a 5.75-GeV electron beam and the CLAS detector. Differential cross sections $d^4sigma/dtdQ^2dx_Bdphi_eta$ and structure functions $sigma_U = sigma_T+epsilonsigma_L, sigma_{TT}$ and $sigma_{LT}$, as functions of $t$ were obtained over a wide range of $Q^2$ and $x_B$. The $eta$ structure functions are compared with those previously measured for $pi^0$ at the same kinematics. At low $t$, both $pi^0$ and $eta$ are described reasonably well by generalized parton distributions (GPDs) in which chiral-odd transversity GPDs are dominant. The $pi^0$ and $eta$ data, when taken together, can facilitate the flavor decomposition of the transversity GPDs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا