Do you want to publish a course? Click here

Non-equilibrium itinerant-electron magnetism: a time-dependent mean-field theory

74   0   0.0 ( 0 )
 Added by Andrea Secchi
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the dynamical magnetic susceptibility of a strongly correlated electronic system in the presence of a time-dependent hopping field, deriving a generalized Bethe-Salpeter equation which is valid also out of equilibrium. Focusing on the single-orbital Hubbard model within the time-dependent Hartree-Fock approximation, we solve the equation in the non-equilibrium adiabatic regime, obtaining a closed expression for the transverse magnetic susceptibility. From this, we provide a rigorous definition of non-equilibrium (time-dependent) magnon frequencies and exchange parameters, expressed in terms of non-equilibrium single-electron Green functions and self-energies. In the particular case of equilibrium, we recover previously known results.

rate research

Read More

FeCrAs displays an unusual electrical response that is neither metallic in character nor divergent at low temperatures, as expected for an insulating response, and therefore it has been termed a nonmetal-metal. We carried out neutron scattering experiments on powder and single crystal samples to study the magnetic dynamics and critical fluctuations in FeCrAs. Magnetic neutron diffraction measurements find Cr3+ magnetic order setting in at 115 K with the mean-field critical exponent. Neutron spectroscopy, however, observes gapless stiff magnetic fluctuations emanating from magnetic positions with propagation wave vector q_0=(1/3,1/3), which persists up to at least 80 meV. The magnetism in FeCrAs therefore displays a response which resembles that of itinerant magnets at high energy transfers, such as chromium alloys. We suggest that the presence of stiff high-energy spin fluctuations is the origin of the unusual temperature dependence of the resistivity.
Nonequilibrium dynamical mean-field theory (DMFT) solves correlated lattice models by obtaining their local correlation functions from an effective model consisting of a single impurity in a self-consistently determined bath. The recently developed mapping of this impurity problem from the Keldysh time contour onto a time-dependent single-impurity Anderson model (SIAM) [C. Gramsch et al., Phys. Rev. B 88, 235106 (2013)] allows one to use wave function-based methods in the context of nonequilibrium DMFT. Within this mapping, long times in the DMFT simulation become accessible by an increasing number of bath orbitals, which requires efficient representations of the time-dependent SIAM wave function. These can be achieved by the multiconfiguration time-dependent Hartree (MCTDH) method and its multi-layer extensions. We find that MCTDH outperforms exact diagonalization for large baths in which the latter approach is still within reach and allows for the calculation of SIAMs beyond the system size accessible by exact diagonalization. Moreover, we illustrate the computation of the self-consistent two-time impurity Greens function within the MCTDH second quantization representation.
Do electrons become ferromagnetic just because of their repulisve Coulomb interaction? Our calculations on the three-dimensional electron gas imply that itinerant ferromagnetim of delocalized electrons without lattice and band structure, the most basic model considered by Stoner, is suppressed due to many-body correlations as speculated already by Wigner, and a possible ferromagnetic transition lowering the density is precluded by the formation of the Wigner crystal.
A dynamical generalisation of the nonlocal coherent-potential approximation is derived based upon the functional integral approach to the interacting electron problem. The free energy is proven to be variational with respect to the self-energy provided a self-consistency condition on a cluster of sites is satisfied. In the present work, calculations are performed within the static approximation and the effect of the nonlocal physics on the formation of the local moment state in a simple model is investigated. The results reveal the importance of the dynamical correlations.
The dynamical mean-field theory (DMFT) is a widely applicable approximation scheme for the investigation of correlated quantum many-particle systems on a lattice, e.g., electrons in solids and cold atoms in optical lattices. In particular, the combination of the DMFT with conventional methods for the calculation of electronic band structures has led to a powerful numerical approach which allows one to explore the properties of correlated materials. In this introductory article we discuss the foundations of the DMFT, derive the underlying self-consistency equations, and present several applications which have provided important insights into the properties of correlated matter.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا