No Arabic abstract
Nonequilibrium dynamical mean-field theory (DMFT) solves correlated lattice models by obtaining their local correlation functions from an effective model consisting of a single impurity in a self-consistently determined bath. The recently developed mapping of this impurity problem from the Keldysh time contour onto a time-dependent single-impurity Anderson model (SIAM) [C. Gramsch et al., Phys. Rev. B 88, 235106 (2013)] allows one to use wave function-based methods in the context of nonequilibrium DMFT. Within this mapping, long times in the DMFT simulation become accessible by an increasing number of bath orbitals, which requires efficient representations of the time-dependent SIAM wave function. These can be achieved by the multiconfiguration time-dependent Hartree (MCTDH) method and its multi-layer extensions. We find that MCTDH outperforms exact diagonalization for large baths in which the latter approach is still within reach and allows for the calculation of SIAMs beyond the system size accessible by exact diagonalization. Moreover, we illustrate the computation of the self-consistent two-time impurity Greens function within the MCTDH second quantization representation.
We derive an exact mapping from the action of nonequilibrium dynamical mean-field theory (DMFT) to a single-impurity Anderson model (SIAM) with time-dependent parameters, which can be solved numerically by exact diagonalization. The representability of the nonequilibrium DMFT action by a SIAM is established as a rather general property of nonequilibrium Green functions. We also obtain the nonequilibrium DMFT equations using the cavity method alone. We show how to numerically obtain the SIAM parameters using Cholesky or eigenvector matrix decompositions. As an application, we use a Krylov-based time propagation method to investigate the Hubbard model in which the hopping is switched on, starting from the atomic limit. Possible future developments are discussed.
We present a new impurity solver for dynamical mean-field theory based on imaginary-time evolution of matrix product states. This converges the self-consistency loop on the imaginary-frequency axis and obtains real-frequency information in a final real-time evolution. Relative to computations on the real-frequency axis, required bath sizes are much smaller and less entanglement is generated, so much larger systems can be studied. The power of the method is demonstrated by solutions of a three band model in the single and two-site dynamical mean-field approximation. Technical issues are discussed, including details of the method, efficiency as compared to other matrix product state based impurity solvers, bath construction and its relation to real-frequency computations and the analytic continuation problem of quantum Monte Carlo, the choice of basis in dynamical cluster approximation, and perspectives for off-diagonal hybridization functions.
We compute the spectral functions for the two-site dynamical cluster theory and for the two-orbital dynamical mean-field theory in the density-matrix renormalization group (DMRG) framework using Chebyshev expansions represented with matrix product states (MPS). We obtain quantitatively precise results at modest computational effort through technical improvements regarding the truncation scheme and the Chebyshev rescaling procedure. We furthermore establish the relation of the Chebyshev iteration to real-time evolution, and discuss technical aspects as computation time and implementation in detail.
We describe the use of coupled-cluster theory as an impurity solver in dynamical mean-field theory (DMFT) and its cluster extensions. We present numerical results at the level of coupled-cluster theory with single and double excitations (CCSD) for the density of states and self-energies of cluster impurity problems in the one- and two-dimensional Hubbard models. Comparison to exact diagonalization shows that CCSD produces accurate density of states and self-energies at a variety of values of $U/t$ and filling fractions. However, the low cost allows for the use of many bath sites, which we define by a discretization of the hybridization directly on the real frequency axis. We observe convergence of dynamical quantities using approximately 30 bath sites per impurity site, with our largest 4-site cluster DMFT calculation using 120 bath sites. We suggest coupled cluster impurity solvers will be attractive in ab initio formulations of dynamical mean-field theory.
We present a new methodology to solve the Anderson impurity model, in the context of dynamical mean-field theory, based on the exact diagonalization method. We propose a strategy to effectively refine the exact diagonalization solver by combining a finite-temperature Lanczos algorithm with an adapted version of the cluster perturbation theory. We show that the augmented diagonalization yields an improved accuracy in the description of the spectral function of the single-band Hubbard model and is a reliable approach for a full d-orbital manifold calculation.