Do you want to publish a course? Click here

Scaling behavior of temperature-dependent thermopower in CeAu2Si2 under pressure

75   0   0.0 ( 0 )
 Added by Zhi Ren
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report a combined study of in-plane resistivity and thermopower of the pressure-induced heavy fermion superconductor CeAu2Si2 up to 27.8 GPa. It is found that thermopower follows a scaling behavior in T/T* almost up to the magnetic critical pressure pc ~ 22 GPa. By comparing with resistivity results, we show that the magnitude and characteristic temperature dependence of thermopower in this pressure range are governed by the Kondo coupling and crystal-field splitting, respectively. Below pc, the superconducting transition is preceded by a large negative thermopower minimum, suggesting a close relationship between the two phenomena. Furthermore, thermopower of a variety of Ce-based Kondo-lattices with different crystal structures follows the same scaling relation up to T/T* ~ 2.



rate research

Read More

We have studied the pressure dependence of the magnetization of single crystalline CeSi_1.81. At ambient pressure ferromagnetism develops below T_C = 9.5 Below ~ 5 K an additional shoulder in low-field hysteresis loops and a metamagnetic crossover around 4 T suggest the appearance of an additional magnetic modulation to the ferromagnetic state. The suppression of the magnetic order in CeSi_1.81 as function of temperature at ambient pressure and as function of pressure at low temperature are in remarkable qualitative agreement. The continuous suppression of the ordered moment at p ~ 13.1 kbar suggests the existence of a ferromagnetic quantum critical point in this material.
We report giant thermopower S = 2.5 mV/K in CoSbS single crystals, a material that shows strong high-temperature thermoelectric performance when doped with Ni or Se. Changes of low temperature thermopower induced by magnetic field point to mechanism of electronic diffusion of carriers in the heavy valence band. Intrinsic magnetic susceptibility is consistent with the Kondo- Insulator-like accumulation of electronic states around the gap edges. This suggests that giant thermopower stems from temperature-dependent renormalization of the non-interacting bands and buildup of the electronic correlations on cooling.
We report a comprehensive structural and valence study of the intermediate valent materials YbNiGa$_{4}$ and YbNiIn$_{4}$ under pressures up to 60 GPa. YbNiGa$_{4}$ undergoes a smooth volume contraction and shows steady increase in Yb-valence with pressure, though the Yb-valence reaches saturation around 25 GPa. In YbNiIn$_{4}$, a change in pressure dependence of the volume and a peak in Yb-valence suggest a pressure induced electronic topological transition occurs around 10-14 GPa. In the pressure region where YbNiIn$_{4}$ and YbNiGa$_{4}$ possess similar Yb-Yb spacings the Yb-valence reveals a precipitous drop. This drop is not captured by density-functional-theory calculations and implies that both the lattice degrees of freedom and the chemical environment play an important role in establishing the valence of Yb.
71 - R. Scheibner 2006
We have studied the temperature dependent thermopower of gate-defined, lateral quantum dots in the Coulomb blockade regime using an electron heating technique. The line shape of the thermopower oscillations depends strongly on the contributing tunneling processes. Between 1.5 K and 40 mK a crossover from a pure sawtooth- to an intermitted sawtooth-like line shape is observed. The latter is attributed to the increasing dominance of cotunneling processes in the Coulomb blockade regime at low temperatures.
67 - Sudip Pal , Kranti Kumar , 2019
Dc magnetic measurements across the charge ordering (CO) transition temperature (T$_{CO}$) in polycrystalline Pr$_{0.5}$Ca$_{0.5}$Mn$_{0.975}$Al$_{0.025}$O$_3$ have been performed under simultaneous influence of external hydrostatic pressure (P) and magnetic field (H). We show the first experimental evidence that the melting of charge order instability obey an interesting scaling function, $delta$T$_{CO}$/P$^alpha$ = $f$(H/P$^beta$) in H-P-T landscape, where $delta$T$_{CO}$ is the suppression of T$_{CO}$ by P and H. Corresponding values of the exponents, $alpha$ = 1.63 and $beta$ = 0.33 have been extracted from data collapsing phenomena. Possible origin of such a scaling behavior has been discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا