Do you want to publish a course? Click here

Particle Swarm Optimized Power Consumption of Trilateration

144   0   0.0 ( 0 )
 Added by Hussein Al-Olimat
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

Trilateration-based localization (TBL) has become a corner stone of modern technology. This study formulates the concern on how wireless sensor networks can take advantage of the computational intelligent techniques using both single- and multi-objective particle swarm optimization (PSO) with an overall aim of concurrently minimizing the required time for localization, minimizing energy consumed during localization, and maximizing the number of nodes fully localized through the adjustment of wireless sensor transmission ranges while using TBL process. A parameter-study of the applied PSO variants is performed, leading to results that show algorithmic improvements of up to 32% in the evaluated objectives.



rate research

Read More

103 - Ioan Raicu 2004
One of the limitations of wireless sensor nodes is their inherent limited energy resource. Besides maximizing the lifetime of the sensor node, it is preferable to distribute the energy dissipated throughout the wireless sensor network in order to minimize maintenance and maximize overall system performance. We investigate a new routing algorithm that uses diffusion in order to achieve relatively even power dissipation throughout a wireless sensor network by making good local decisions. We leverage from concepts of peer-to-peer networks in which the system acts completely decentralized and all nodes in the network are equal peers. Our algorithm utilizes the node load, power levels, and spatial information in order to make the optimal routing decision. According to our preliminary experimental results, our proposed algorithm performs well according to its goals.
106 - Jing Yang , Yi Zhong , Xiaohu Ge 2019
The conventional outage in wireless communication systems is caused by the deterioration of the wireless communication link, i.e., the received signal power is less than the minimum received signal power. Is there a possibility that the outage occurs in wireless communication systems with a good channel state? Based on both communication and heat transfer theories, a power-consumption outage in the wireless communication between millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) base stations (BSs) and smartphones has been modeled and analyzed. Moreover, the total transmission time model with respect to the number of power-consumption outages is derived for mmWave massive MIMO communication systems. Simulation results indicate that the total transmission time is extended by the power-consumption outage, which deteriorates the average transmission rate of mmWave massive MIMO BSs.
Integrating unmanned aerial vehicles (UAV) to non-orthogonal multiple access (NOMA) visible light communications (VLC) exposes many potentials over VLC and NOMA-VLC systems. In this circumstance, user grouping is of importance to reduce the NOMA decoding complexity when the number of users is large; however, this issue has not been considered in the existing study. In this paper, we aim to maximize the weighted sum-rate of all the users by jointly optimizing UAV placement, user grouping, and power allocation in downlink NOMA-VLC systems. We first consider an efficient user clustering strategy, then apply a swarm intelligence approach, namely Harris Hawk Optimization (HHO), to solve the joint UAV placement and power allocation problem. Simulation results show outperformance of the proposed algorithm in comparison with four alternatives: OMA, NOMA without pairing, NOMA-VLC with fixed UAV placement, and random user clustering.
With the constant increase in demand for data connectivity, network service providers are faced with the task of reducing their capital and operational expenses while ensuring continual improvements to network performance. Although Network Function Virtualization (NFV) has been identified as a solution, several challenges must be addressed to ensure its feasibility. In this paper, we present a machine learning-based solution to the Virtual Network Function (VNF) placement problem. This paper proposes the Depth-Optimized Delay-Aware Tree (DO-DAT) model by using the particle swarm optimization technique to optimize decision tree hyper-parameters. Using the Evolved Packet Core (EPC) as a use case, we evaluate the performance of the model and compare it to a previously proposed model and a heuristic placement strategy.
Distributed Constraint Optimization Problems (DCOPs) are a widely studied framework for coordinating interactions in cooperative multi-agent systems. In classical DCOPs, variables owned by agents are assumed to be discrete. However, in many applications, such as target tracking or sleep scheduling in sensor networks, continuous-valued variables are more suitable than discrete ones. To better model such applications, researchers have proposed Continuous DCOPs (C-DCOPs), an extension of DCOPs, that can explicitly model problems with continuous variables. The state-of-the-art approaches for solving C-DCOPs experience either onerous memory or computation overhead and unsuitable for non-differentiable optimization problems. To address this issue, we propose a new C-DCOP algorithm, namely Particle Swarm Optimization Based C-DCOP (PCD), which is inspired by Particle Swarm Optimization (PSO), a well-known centralized population-based approach for solving continuous optimization problems. In recent years, population-based algorithms have gained significant attention in classical DCOPs due to their ability in producing high-quality solutions. Nonetheless, to the best of our knowledge, this class of algorithms has not been utilized to solve C-DCOPs and there has been no work evaluating the potential of PSO in solving classical DCOPs or C-DCOPs. In light of this observation, we adapted PSO, a centralized algorithm, to solve C-DCOPs in a decentralized manner. The resulting PCD algorithm not only produces good-quality solutions but also finds solutions without any requirement for derivative calculations. Moreover, we design a crossover operator that can be used by PCD to further improve the quality of solutions found. Finally, we theoretically prove that PCD is an anytime algorithm and empirically evaluate PCD against the state-of-the-art C-DCOP algorithms in a wide variety of benchmarks.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا