Do you want to publish a course? Click here

Numerical Study of the Simplest String Bit Model

79   0   0.0 ( 0 )
 Added by Songge Sun
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

String bit models provide a possible method to formulate a string as a discrete chain of pointlike string bits. When the bit number $M$ is large, a chain behaves as a continuous string. We study the simplest case that has only one bosonic bit and one fermionic bit. The creation and annihilation operators are adjoint representations of the $Uleft(Nright)$ color group. We show that the supersymmetry reduces the parameter number of a Hamiltonian from 7 to 3 and, at $N=infty$, ensures a continuous energy spectrum, which implies the emergence of one spatial dimension. The Hamiltonian $H_{0}$ is constructed so that in the large $N$ limit it produces a world sheet spectrum with one Grassmann world sheet field. We concentrate on numerical study of the model in finite $N$. For the Hamiltonian $H_{0}$, we find that the would-be ground energy states disappear at $N=left(M-1right)/2$ for odd $Mleq11$. Such a simple pattern is spoiled if $H$ has an additional term $xiDelta H$ which does not affect the result of $N=infty$. The disappearance point moves to higher (lower) $N$ when $xi$ increases (decreases). Particularly, the $pmleft(H_{0}-Delta Hright)$ cases suggest a possibility that the ground state could survive at large $M$ and $Mgg N$. Our study reveals that the model has stringy behavior: when $N$ is fixed and large enough, the ground energy decreases linearly with respect to $M$, and the excitation energy is roughly of order $M^{-1}$. We also verify that a stable system of Hamiltonian $pm H_{0}+xiDelta H$ requires $xigeqmp1$.



rate research

Read More

In string bit models, the superstring emerges as a very long chain of bits, in which s fermionic degrees of freedom contribute positively to the ground state energy in a way to exactly cancel the destabilizing negative contributions of d=s bosonic degrees of freedom. We propose that the physics of string formation be studied nonperturbatively in the class of string bit models in which s>d, so that a long chain is stable, in contrast to the marginally stable (s=d=8) superstring chain. We focus on the simplest of these models with s=1 and d=0, in which the string bits live in zero space dimensions. The string bit creation operators are N X N matrices. We choose a Hamiltonian such that the large N limit produces string moving in one space dimension, with excitations corresponding to one Grassmann lightcone worldsheet field (s=1) and no bosonic worldsheet field (d=0). We study this model at finite N to assess the role of the large N limit in the emergence of the spatial dimension. Our results suggest that string-like states with large bit number M may not exist for N<(M-1)/2. If this is correct, one can have finite chains of string bits, but not continuous string, at finite N. Only for extremely large N can such chains behave approximately like continuous string, in which case there will also be the (approximate) emergence of a new spatial dimension. In string bit models designed to produce critical superstring at N=infinity, we can then expect only approximate Lorentz invariance at finite N, with violations of order 1/N^2.
82 - Gaoli Chen 2017
We provide a formalism to calculate the cubic interaction vertices of the stable string bit model, in which string bits have $s$ spin degrees of freedom but no space to move. With the vertices, we obtain a formula for one-loop self-energy, i.e., the $mathcal{O}left(1/N^{2}right)$ correction to the energy spectrum. A rough analysis shows that, when the bit number $M$ is large, the ground state one-loop self-energy $Delta E_{G}$ scale as $M^{5-s/4}$ for even $s$ and $M^{4-s/4}$ for odd $s$. Particularly, in $s=24$, we have $Delta E_{G}sim 1/M$, which resembles the Poincare invariant relation $P^{-}sim 1/P^{+}$ in $(1+1)$ dimensions. We calculate analytically the one-loop correction for the ground energies with $M=3$ and $s=1,,2$. We then numerically confirm that the large $M$ behavior holds for $sleq4$ cases.
We present a global study of the simplest scalar phantom dark matter model. The best fit parameters of the model are determined by simultaneously imposing (i) relic density constraint from WMAP, (ii) 225 live days data from direct experiment XENON100, (iii) upper limit of gamma-ray flux from Fermi-LAT indirect detection based on dwarf spheroidal satellite galaxies, and (iv) the Higgs boson candidate with a mass about 125 GeV and its invisible branching ratio no larger than 40% if the decay of the Higgs boson into a pair of dark matter is kinematically allowed. The allowed parameter space is then used to predict annihilation cross sections for gamma-ray lines, event rates for three processes mono-b jet, single charged lepton and two charged leptons plus missing energies at the Large Hadron Collider, as well as to evaluate the muon anomalous magnetic dipole moment for the model.
148 - Charles B. Thorn 2019
We study in a general way the construction of string bit Hamiltonians which are supersymmetric, We construct several quadratic and quartic polynomials in string bit creation and annihilation operators ${barphi}^A_{a_1cdots a_n}$, ${phi}^A_{a_1cdots a_n}$,which commute with the supersymmetry generators $Q^a$. Among these operators are ones with the spinor tensor structure required to provide the lightcone worldsheet vertex insertion factors needed to give the correct interactions for the IIB superstring, whenever a closed string separates into two closed strings or two closed strings join into one.
We show that planar cal N=4 Yang-Mills theory at zero t Hooft coupling can be efficiently described in terms of 8 bosonic and 8 fermionic oscillators. We show that these oscillators can serve as world-sheet variables, the string bits, of a discretized string. There is a one to one correspondence between the on shell gauge invariant words of the free Y-M theory and the states in the oscillators Hilbert space, obeying a local gauge and cyclicity constraints. The planar two-point functions and the three-point functions of all gauge invariant words are obtained by the simple delta-function overlap of the corresponding discrete string world sheet. At first order in the t Hooft coupling, i.e. at one-loop in the Y-M theory, the logarithmic corrections of the planar two-point and the three-point functions can be incorporated by nearest neighbour interactions among the discretized string bits. In the SU(2) sub-sector we show that the one-loop corrections to the structure constants can be uniquely determined by the symmetries of the bit picture. For the SU(2) sub-sector we construct a gauged, linear, discrete world-sheet model for the oscillators, with only nearest neighbour couplings, which reproduces the anomalous dimension Hamiltonian up to two loops. This model also obeys BMN scaling to all loops.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا