No Arabic abstract
We show that planar cal N=4 Yang-Mills theory at zero t Hooft coupling can be efficiently described in terms of 8 bosonic and 8 fermionic oscillators. We show that these oscillators can serve as world-sheet variables, the string bits, of a discretized string. There is a one to one correspondence between the on shell gauge invariant words of the free Y-M theory and the states in the oscillators Hilbert space, obeying a local gauge and cyclicity constraints. The planar two-point functions and the three-point functions of all gauge invariant words are obtained by the simple delta-function overlap of the corresponding discrete string world sheet. At first order in the t Hooft coupling, i.e. at one-loop in the Y-M theory, the logarithmic corrections of the planar two-point and the three-point functions can be incorporated by nearest neighbour interactions among the discretized string bits. In the SU(2) sub-sector we show that the one-loop corrections to the structure constants can be uniquely determined by the symmetries of the bit picture. For the SU(2) sub-sector we construct a gauged, linear, discrete world-sheet model for the oscillators, with only nearest neighbour couplings, which reproduces the anomalous dimension Hamiltonian up to two loops. This model also obeys BMN scaling to all loops.
We study event shapes in N=4 SYM describing the angular distribution of energy and R-charge in the final states created by the simplest half-BPS scalar operator. Applying the approach developed in the companion paper arXiv:1309.0769, we compute these observables using the correlation functions of certain components of the N=4 stress-tensor supermultiplet: the half-BPS operator itself, the R-symmetry current and the stress tensor. We present master formulas for the all-order event shapes as convolutions of the Mellin amplitude defining the correlation function of the half-BPS operators, with a coupling-independent kernel determined by the choice of the observable. We find remarkably simple relations between various event shapes following from N=4 superconformal symmetry. We perform thorough checks at leading order in the weak coupling expansion and show perfect agreement with the conventional calculations based on amplitude techniques. We extend our results to strong coupling using the correlation function of half-BPS operators obtained from the AdS/CFT correspondence.
We consider the ambitwistor description of $mathcal N$=4 supersymmetric extension of U($N$) Yang-Mills theory on Minkowski space $mathbb R^{3,1}$. It is shown that solutions of super-Yang-Mills equations are encoded in real-analytic U($N$)-valued functions on a domain in superambitwistor space ${mathcal L}_{mathbb R}^{5|6}$ of real dimension $(5|6)$. This leads to a procedure for generating solutions of super-Yang-Mills equations on $mathbb R^{3,1}$ via solving a Riemann-Hilbert-type factorization problem on two-spheres in $mathcal L_{mathbb R}^{5|6}$.
Quantum correlators of pure supersymmetric Yang-Mills theories in D=3,4,6 and 10 dimensions can be reformulated via the non-linear and non-local transformation (`Nicolai map) that maps the full functional measure of the interacting theory to that of a free bosonic theory. As a special application we show that for the maximally extended N=4 theory in four dimensions, and up to order O(g^2), all known results for scalar correlators can be recovered in this way without any use of anti-commuting variables, in terms of a purely bosonic and ghost free functional measure for the gauge fields. This includes in particular the dilatation operator yielding the anomalous dimensions of composite operators. The formalism is thus competitive with more standard perturbative techniques.
We perform a numerical bootstrap study of the mixed correlator system containing the half-BPS operators of dimension two and three in $mathcal N = 4$ Super Yang-Mills. This setup improves on previous works in the literature that only considered single correlators of one or the other operator. We obtain upper bounds on the leading twist in a given representation of the R-symmetry by imposing gaps on the twist of all operators rather than the dimension of a single one. As a result we find a tension between the large $N$ supergravity predictions and the numerical finite $N$ results already at $Nsim 100$. A few possible solutions are discussed: the extremal spectrum suggests that at large but finite $N$, in addition to the double trace operators, there exists a second tower of states with smaller dimension. We also obtain new bounds on the dimension of operators which were not accessible with a single correlator setup. Finally we consider bounds on the OPE coefficients of various operators. The results obtained for the OPE coefficient of the lightest scalar singlet show evidences of a two dimensional conformal manifold.
Action of 4 dimensional N=4 supersymmetric Yang-Mills theory is written by employing the superfields in N=4 superspace which were used to prove the equivalence of its constraint equations and equations of motion. Integral forms of the extended superspace are engaged to collect all of the superfields in one master superfield. The proposed N=4 supersymmetric Yang-Mills action in extended superspace is shown to acquire a simple form in terms of the master superfield.