Do you want to publish a course? Click here

Gauge invariant theories of linear response for strongly correlated superconductors

408   0   0.0 ( 0 )
 Added by Rufus Boyack
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a general diagrammatic theory for determining consistent electromagnetic response functions in strongly correlated fermionic superfluids. The general treatment of correlations beyond BCS theory requires a new theoretical formalism not contained in the current literature. Among concrete examples are a rather extensive class of theoretical models which incorporate BCS-BEC crossover as applied to the ultra cold Fermi gases, along with theories specifically associated with the high-$T_c$ cuprates. The challenge is to maintain gauge invariance, while simultaneously incorporating additional self-energy terms arising from strong correlation effects. Central to our approach is the application of the Ward-Takahashi identity, which introduces collective mode contributions in the response functions and guarantees that the $f$-sum rule is satisfied. We outline a powerful and very general method to determine these collective modes in a manner compatible with gauge invariance. Finally, as an alternative approach, we contrast with the path integral formalism. Here, the calculation of gauge invariant response appears more straightforward. However, the collective modes introduced are essentially those of strict BCS theory, with no modification from correlation effects. Since the path integral scheme simultaneously addresses electrodynamics and thermodynamics, we emphasize that it should be subjected to a consistency test beyond gauge invariance, namely that of the compressibility sum-rule. We show how this sum-rule fails in the conventional path integral approach.



rate research

Read More

Motivated by recent proposals of correlation induced insensitivity of d-wave superconductors to impurities, we develop a simple pairing theory for these systems for up to a moderate strength of disorder. Our description implements the key ideas of Anderson, originally proposed for disordered s-wave superconductors, but in addition takes care of the inherent strong electronic repulsion in these compounds, as well as disorder induced inhomogeneities. We first obtain the self-consistent one-particle states, that capture the effects of disorder exactly, and strong correlations using Gutzwiller approximation. These `normal states, representing the interplay of strong correlations and disorder, when coupled through pairing attractions following the path of Bardeen-Cooper-Schrieffer (BCS), produce results nearly identical to those from a more sophisticated Gutzwiller augmented Bogoliubov-de Gennes analysis.
313 - J. Chaloupka , D. Munzar 2007
We report on results of our theoretical study of the in-plane infrared conductivity of the high-Tc cuprate superconductors using the model where charged planar quasiparticles are coupled to spin fluctuations. The computations include both the renormalization of the quasiparticles and the corresponding modification of the current-current vertex function (vertex correction), which ensures gauge invariance of the theory and local charge conservation in the system. The incorporation of the vertex corrections leads to an increase of the total intraband optical spectral weight (SW) at finite frequencies, a SW transfer from far infrared to mid infrared, a significant reduction of the SW of the superconducting condensate, and an amplification of characteristic features in the superconducting state spectra of the inverse scattering rate 1/tau. We also discuss the role of selfconsistency and propose a new interpretation of a kink occurring in the experimental low temperature spectra of 1/tau around 1000cm^{-1}.
We analyze the complex interplay of the strong correlations and impurities in a high temperature superconductor and show that both the nature and degree of the inhomogeneities at zero temperature in the local order parameters change drastically from what are obtained in a simple Hartree-Fock-Bogoliubov theory. While both the strong electronic repulsions and disorder contribute to the nanoscale inhomogeneity in the population of charge-carriers, we find them to compete with each other leading to a relatively smooth variation of the local density. Our self-consistent calculations modify the spatial fluctuations in the pairing amplitude by suppressing all the double-occupancy within a Gutzwiller formalism and prohibit the formation of distinct superconducting-`islands. In contrast, presence of such `islands controls the outcome if strong correlations are neglected. The reorganization of the spatial structures in the Gutzwiller method makes these superconductors surprisingly insensitive to the impurities. This is illustrated by a very weak decay of superfluid stiffness, off-diagonal long range order and local density of states up to a large disorder strength. Exploring the origin of such a robustness we conclude that the underlying one-particle normal states reshape in a rich manner, such that the superconductor formed by pairing these states experiences a weaker but spatially correlated effective disorder. Such a route to superconductivity is evocative of Andersons theorem. Our results capture the key experimental trends in the cuprates.
157 - S. Y. Savrasov , G. Kotliar 2002
We introduce a new linear response method to study the lattice dynamics of materials with strong correlations. It is based on a combination of dynamical mean field theory of strongly correlated electrons and the local density functional theory of electronic structure of solids. We apply the method to study the phonon dispersions of a prototype Mott insulator NiO. Our results show overall much better agreement with experiment than the corresponding local density predictions.
We use femtosecond optical spectroscopy to systematically measure the primary energy relaxation rate k1 of photoexcited carriers in cuprate and pnictide superconductors. We find that k1 increases monotonically with increased negative strain in the crystallographic a-axis. Generally, the Bardeen-Shockley deformation potential theorem and, specifically, pressure-induced Raman shifts reported in the literature suggest that increased negative strain enhances electron-phonon coupling, which implies that the observed direct correspondence between a and k1 is consistent with the canonical assignment of k1 to the electron-phonon interaction. The well-known non-monotonic dependence of the superconducting critical temperature Tc on the a-axis strain is also reflected in a systematic dependence Tc on k1, with a distinct maximum at intermediate values (~16 ps-1 at room temperature). The empirical non-monotonic systematic variation of Tc with the strength of the electron-phonon interaction provides us with unique insight into the role of electron-phonon interaction in relation to the mechanism of high-Tc superconductivity as a crossover phenomenon.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا