We demonstrate the first wavelength-tunable electrically-pumped source of non-classical light that can emit photons with wavelength in resonance with the D2 transitions of 87Rb atoms. The device is fabricated by integrating a novel GaAs single-quantum-dot light-emitting-diode (LED) onto a piezoelectric actuator. By feeding the emitted photons into a 75-mm-long cell containing warm 87Rb atom vapor, we observe slow-light with a temporal delay of up to 3.4 ns. In view of the possibility of using 87Rb atomic vapors as quantum memories, this work makes an important step towards the realization of hybrid-quantum systems for future quantum networks.
In III-V semiconductor nano-structures the electron and nuclear spin dynamics are strongly coupled. Both spin systems can be controlled optically. The nuclear spin dynamics is widely studied, but little is known about the initialization mechanisms. Here we investigate optical pumping of carrier and nuclear spins in charge tunable GaAs dots grown on 111A substrates. We demonstrate dynamic nuclear polarization (DNP) at zero magnetic field in a single quantum dot for the positively charged exciton X$^+$ state transition. We tune the DNP in both amplitude and sign by variation of an applied bias voltage V$_g$. Variation of $Delta$V$_g$ of the order of 100 mV changes the Overhauser splitting (nuclear spin polarization) from -30 $mu$eV (-22 %) to +10 $mu$eV (+7 %), although the X$^+$ photoluminescence polarization does not change sign over this voltage range. This indicates that absorption in the structure and energy relaxation towards the X$^+$ ground state might provide favourable scenarios for efficient electron-nuclear spin flip-flops, generating DNP during the first tens of ps of the X$^+$ lifetime which is of the order of hundreds of ps. Voltage control of DNP is further confirmed in Hanle experiments.
Compact and electrically controllable on-chip sources of indistinguishable photons are desirable for the development of integrated quantum technologies. We demonstrate that two quantum dot light emitting diodes (LEDs) in close proximity on a single chip can function as a tunable, all-electric quantum light source. Light emitted by an electrically excited driving LED is used to excite quantum dots the neighbouring diode. The wavelength of the quantum dot emission from the neighbouring driven diode is tuned via the quantum confined Stark effect. We also show that we can electrically tune the fine structure splitting.
Three-dimensional anisotropy of the Lande g-factor and its electrical modulation are studied for single uncapped InAs self-assembled quantum dots (QDs). The g-factor is evaluated from measurement of inelastic cotunneling via Zeeman substates in the QD for various magnetic field directions. We find that the value and anisotropy of the g-factor depends on the type of orbital state which arises from the three-dimensional confinement anisotropy of the QD potential. Furthermore, the g-factor and its anisotropy are electrically tuned by a side-gate which modulates the confining potential.
In order to employ solid state quantum dots as qubits, both a high degree of control over the confinement potential as well as sensitive charge detection are essential. We demonstrate that by combining local anodic oxidation with local Schottky-gates, these criteria are nicely fulfilled in the resulting hybrid device. To this end, a quantum dot with adjacent charge detector is defined. After tuning the quantum dot to contain only a single electron, we are able to observe the charge detector signal of the quantum dot state for a wide range of tunnel couplings.
We evaluate the Lande g factor of electrons in quantum dots (QDs) fabricated from GaAs quantum well (QW) structures of different well width. We first determine the Lande electron g factor of the QWs through resistive detection of electron spin resonance and compare it to the enhanced electron g factor determined from analysis of the magneto-transport. Next, we form laterally defined quantum dots using these quantum wells and extract the electron g factor from analysis of the cotunneling and Kondo effect within the quantum dots. We conclude that the Lande electron g factor of the quantum dot is primarily governed by the electron g factor of the quantum well suggesting that well width is an ideal design parameter for g-factor engineering QDs.