No Arabic abstract
New classes two-dimensional (2D) materials beyond graphene, including layered and non-layered, and their heterostructures, are currently attracting increasing interest due to their promising applications in nanoelectronics, optoelectronics and clean energy, where thermal transport property is one of the fundamental physical parameters. In this paper, we systematically investigated the phonon transport properties of 2D orthorhombic group IV-VI compounds of $GeS$, $GeSe$, $SnS$ and $SnSe$ by solving the Boltzmann transport equation (BTE) based on first-principles calculations. Despite the similar puckered (hinge-like) structure along the armchair direction as phosphorene, the four monolayer compounds possess diverse anisotropic properties in many aspects, such as phonon group velocity, Youngs modulus and lattice thermal conductivity ($kappa$), etc. Especially, the $kappa$ along the zigzag and armchair directions of monolayer $GeS$ shows the strongest anisotropy while monolayer $SnS$ and $SnSe$ shows an almost isotropy in phonon transport. The origin of the diverse anisotropy is fully studied and the underlying mechanism is discussed in detail. With limited size, the $kappa$ could be effectively lowered, and the anisotropy could be effectively modulated by nanostructuring, which would extend the applications in nanoscale thermoelectrics and thermal management. Our study offers fundamental understanding of the anisotropic phonon transport properties of 2D materials, and would be of significance for further study, modulation and aplications in emerging technologies.
One novel family of two-dimensional IV-V compounds have been proposed, whose dynamical stabilities and electronic properties have been systematically investigated using the density functional theory. Extending from our previous work, two phases of carbon phosphorus bilayers alpha- and beta-C$_{2}$P$_{2}$ have been proposed. Both of them are dynamically stable and thermally stable at 300K. They possess intrinsic HSE gaps of 2.70 eV and 2.67 eV, respectively. Similar alpha- and beta-C$_{2}$Y$_{2}$ (Y= As, Sb, and Bi) can be obtained if the phosphorus atoms in the alpha- and beta-C$_{2}$P$_{2}$ replaced by other pnictogens, respectively. If the C atoms in the alpha- and beta-C$_{2}$Y$_{2}$ (Y= P, As, Sb, and Bi) are further replaced by other IV elements X (X=Si, Ge, Sn, and Pb), respectively, more derivatives of alpha- and beta-X$_{2}$Y$_{2}$ (Y=N, P, As, Sb, and Bi) also can be obtained. It was found that the majority of them are dynamically stable. The proposed compounds range from metal to insulators depending on their constitutions. All insulated compounds can undergo a transition from insulator to metal induced by biaxial strain. Some of them can undergo a transition from indirect band gap to direct band gap. These new compounds can become candidates as photovoltaic device, thermoelectric material field as well as lamellated superconductors.
Extreme confinement of electromagnetic energy by phonon polaritons holds the promise of strong and new forms of control over the dynamics of matter. To bring such control to the atomic-scale limit, it is important to consider phonon polaritons in two-dimensional (2D) systems. Recent studies have pointed out that in 2D, splitting between longitudinal and transverse optical (LO and TO) phonons is absent at the $Gamma$ point, even for polar materials. Does this lack of LO--TO splitting imply the absence of a phonon polariton in polar monolayers? Here, we derive a first-principles expression for the conductivity of a polar monolayer specified by the wavevector-dependent LO and TO phonon dispersions. In the long-wavelength (local) limit, we find a universal form for the conductivity in terms of the LO phonon frequency at the $Gamma$ point, its lifetime, and the group velocity of the LO phonon. Our analysis reveals that the phonon polariton of 2D is simply the LO phonon of the 2D system. For the specific example of hexagonal boron nitride (hBN), we estimate the confinement and propagation losses of the LO phonons, finding that high confinement and reasonable propagation quality factors coincide in regions which may be difficult to detect with current near-field optical microscopy techniques. Finally, we study the interaction of external emitters with two-dimensional hBN nanostructures, finding extreme enhancement of spontaneous emission due to coupling with localized 2D phonon polaritons, and the possibility of multi-mode strong and ultra-strong coupling between an external emitter and hBN phonons. This may lead to the design of new hybrid states of electrons and phonons based on strong coupling.
The electronic structure, optical and x-ray absorption spectra, angle dependence of the cyclotron masses and extremal cross sections of the Fermi surface, phonon spectra, electron-phonon Eliashberg and transport spectral functions, temperature dependence of electrical resistivity of the MB2 (M=Ti and Zr) diborides were investigated from first principles using the full potential linear muffin-tin orbital method. The calculations of the dynamic matrix were carried out within the framework of the linear response theory. A good agreement with experimental data of optical and x-ray absorption spectra, phonon spectra, electron-phonon spectral functions, electrical resistivity, cyclotron masses and extremal cross sections of the Fermi surface was achieved.
We study hydrodynamic phonon heat transport in two-dimensional (2D) materials. Starting from the Peierls-Boltzmann equation within the Callaway model, we derive a 2D Guyer-Krumhansl-like equation describing non-local hydrodynamic phonon transport, taking into account the quadratic dispersion of flexural phonons. In additional to Poiseuille flow, second sound propagation, the equation predicts heat current vortices and negative nonlocal thermal conductance in 2D materials, common in classical fluid but scarcely considered in phonon transport. Our results also illustrate the universal transport behavior of hydrodynamics, independent on the type of quasi-particles and their microscopic interactions.
Quantifying anisotropy in the chemical reactions of mesoscopic crystals has mostly resorted on the combination of electron microscopy and diffraction. In this work, we established crystal-facet-resolved kinetic measurements of oxidation reactions in 2D transition metal dichalcogenides (TMDs) using optical second-harmonic generation spectroscopy and scanning probe microscopy. We show the in-plane anisotropy of their bond-breaking reactions is governed by their structure and strongly material-dependent among four TMDs. The facet-resolved analysis directly revealed that the reactions proceed fastest (slowest) for chalcogen (metal)-terminated zigzag edges with armchair edges in the middle. The degree of the anisotropy inducing trigonal oxidation patterns was much higher in MoS2 and MoSe2 than WS2 and WSe2. Kinetic Wulff construction based on edge-specific reaction rates verified the material-dependent mesoscopic reaction patterns. We also show that the reactions are initiated at substrate-mediated defects located on the bottom and top surfaces of 2D TMDs.