Do you want to publish a course? Click here

Extending the velocity-dependent one-scale model for domain walls

70   0   0.0 ( 0 )
 Added by C. J. A. P. Martins
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on an extensive study of the evolution of domain wall networks in Friedmann-Lema^{i}tre-Robertson-Walker universes by means of the largest currently available field-theory simulations. These simulations were done in $4096^3$ boxes and for a range of different fixed expansion rates, as well as for the transition between the radiation and matter eras. A detailed comparison with the velocity-dependent one-scale (VOS) model shows that this cannot accurately reproduce the results of the entire range of simulated regimes if one assumes that the phenomenological energy loss and momentum parameters are constants. We therefore discuss how a more accurate modeling of these parameters can be done, specifically by introducing an additional mechanism of energy loss (scalar radiation, which is particularly relevant for regimes with relatively little damping) and a modified momentum parameter which is a function of velocity (in analogy to what was previously done for cosmic strings). We finally show that this extended model, appropriately calibrated, provides an accurate fit to our simulations.



rate research

Read More

151 - P. P. Avelino 2019
We develop a parameter-free velocity-dependent one-scale model for the evolution of the characteristic length $L$ and root-mean-square velocity $sigma_v$ of standard domain wall networks in homogeneous and isotropic cosmologies. We compare the frictionless scaling solutions predicted by our model, in the context of cosmological models having a power law evolution of the scale factor $a$ as a function of the cosmic time $t$ ($a propto t^lambda$, $0< lambda < 1$), with the corresponding results obtained using field theory numerical simulations. We show that they agree well (within a few $%$) for root-mean-square velocities $sigma_v$ smaller than $0.2 , c$ ($lambda ge 0.9$), where $c$ is the speed of light in vacuum, but significant discrepancies occur for larger values of $sigma_v$ (smaller values of $lambda$). We identify problems with the determination of $L$ and $sigma_v$ from numerical field theory simulations which might potentially be responsible for these discrepancies.
The next-to-minimal supersymmetric standard model predicts the formation of domain walls due to the spontaneous breaking of the discrete $Z_3$-symmetry at the electroweak phase transition, and they collapse before the epoch of big bang nucleosynthesis if there exists a small bias term in the potential which explicitly breaks the discrete symmetry. Signatures of gravitational waves produced from these unstable domain walls are estimated and their parameter dependence is investigated. It is shown that the amplitude of gravitational waves becomes generically large in the decoupling limit, and that their frequency is low enough to be probed in future pulsar timing observations.
89 - Kenichi Saikawa 2017
In this contribution, we discuss the cosmological scenario where unstable domain walls are formed in the early universe and their late-time annihilation produces a significant amount of gravitational waves. After describing cosmological constraints on long-lived domain walls, we estimate the typical amplitude and frequency of gravitational waves observed today. We also review possible extensions of the standard model of particle physics that predict the formation of unstable domain walls and can be probed by observation of relic gravitational waves. It is shown that recent results of pulser timing arrays and direct detection experiments partially exclude the relevant parameter space, and that a much wider parameter space can be covered by the next generation of gravitational wave observatories.
We apply a recently developed formalism to study the evolution of a current-carrying string network under the simple but generic assumption of a linear equation of state. We demonstrate that the existence of a scaling solution with non-trivial current depends on the expansion rate of the universe, the initial root mean square current on the string, and the available energy loss mechanisms. We find that the fast expansion rate after radiation-matter equality will tend to rapidly dilute any pre-existing current and the network will evolve towards the standard Nambu-Goto scaling solution (provided there are no external current-generating mechanisms). During the radiation era, current growth is possible provided the initial conditions for the network generate a relatively large current and/or there is significant early string damping. The network can then achieve scaling with a stable non-trivial current, assuming large currents will be regulated by some leakage mechanism. The potential existence of current-carrying string networks in the radiation era, unlike the standard Nambu-Goto networks expected in the matter era, could have interesting phenomenological consequences.
We develop an analytic model to quantitatively describe the evolution of superconducting cosmic string networks. Specifically, we extend the velocity-dependent one-scale (VOS) model to incorporate arbitrary currents and charges on cosmic string worldsheets under two main assumptions, the validity of which we also discuss. We derive equations that describe the string network evolution in terms of four macroscopic parameters: the mean string separation (or alternatively the string correlation length) and the root mean square (RMS) velocity which are the cornerstones of the VOS model, together with parameters describing the averaged timelike and spacelike current contributions. We show that our extended description reproduces the particular cases of wiggly and chiral cosmic strings, previously studied in the literature. This VOS model enables investigation of the evolution and possible observational signatures of superconducting cosmic string networks for more general equations of state, and these opportunities will be exploited in a companion paper.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا