Do you want to publish a course? Click here

Binary Stars Can Provide the Missing Photons Needed for Reionization

78   0   0.0 ( 0 )
 Added by Xiangcheng Ma
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Empirical constraints on reionization require galactic ionizing photon escape fractions fesc>20%, but recent high-resolution radiation-hydrodynamic calculations have consistently found much lower values ~1-5%. While these models include strong stellar feedback and additional processes such as runaway stars, they almost exclusively consider stellar evolution models based on single (isolated) stars, despite the fact that most massive stars are in binaries. We re-visit these calculations, combining radiative transfer and high-resolution cosmological simulations from the Feedback in Realistic Environments (FIRE) project. For the first time, we use a stellar evolution model that includes a physically and observationally motivated treatment of binaries (the BPASS model). Binary mass transfer and mergers enhance the population of massive stars at late times (>3 Myr) after star formation, which in turn strongly enhances the late-time ionizing photon production (especially at low metallicities). These photons are produced after feedback from massive stars has carved escape channels in the ISM, and so efficiently leak out of galaxies. As a result, the time-averaged effective escape fraction (ratio of escaped ionizing photons to observed 1500 A photons) increases by factors 4-10, sufficient to explain reionization. While important uncertainties remain, we conclude that binary evolution may be critical for understanding the ionization of the Universe.



rate research

Read More

82 - Xiangcheng Ma 2020
We present the escape fraction of hydrogen ionizing photons (f_esc) from a sample of 34 high-resolution cosmological zoom-in simulations of galaxies at z>5 in the Feedback in Realistic Environments project, post-processed with a Monte Carlo radiative transfer code for ionizing radiation. Our sample consists of 8500 halos in M_vir~10^8--10^{12} M_sun (M_star~10^4--10^{10} M_sun) at z=5--12. We find the sample average <f_esc> increases with halo mass for M_vir~10^8--10^{9.5} M_sun, becomes nearly constant for M_vir~10^{9.5}--10^{11} M_sun, and decreases at M_vir>10^{11} M_sun. Equivalently, <f_esc> increases with stellar mass up to M_star~10^8 M_sun and decreases at higher masses. Even applying single-star stellar population synthesis models, we find a moderate <f_esc>~0.2 for galaxies at M_star~10^8 M_sun. Nearly half of the escaped ionizing photons come from stars 1--3 Myr old and the rest from stars 3--10 Myr old. Binaries only have a modest effect, boosting <f_esc> by ~25--35% and the number of escaped photons by 60--80%. Most leaked ionizing photons are from vigorously star-forming regions that usually contain a feedback-driven kpc-scale superbubble surrounded by a dense shell. The shell is forming stars while accelerated, so new stars formed earlier in the shell are already inside the shell. Young stars in the bubble and near the edge of the shell can fully ionize some low-column-density paths pre-cleared by feedback, allowing a large fraction of their ionizing photons to escape. The decrease of <f_esc> at the high-mass end is due to dust attenuation, while at the low-mass end, <f_esc> decreases owing to inefficient star formation (and hence feedback). At fixed mass, <f_esc> tends to increase with redshift. Our simulations produce sufficient ionizing photons for cosmic reionization.
Short Gamma-Ray Bursts (SGRBs) are among the most luminous explosions in the universe, releasing in less than one second the energy emitted by our Galaxy over one year. Despite decades of observations, the nature of their central-engine remains unknown. Considering a binary of magnetized neutron stars and solving Einstein equations, we show that their merger results in a rapidly spinning black hole surrounded by a hot and highly magnetized torus. Lasting over 35 ms and much longer than previous simulations, our study reveals that magnetohydrodynamical instabilities amplify an initially turbulent magnetic field of ~ 10^{12} G to produce an ordered poloidal field of ~ 10^{15} G along the black-hole spin-axis, within a half-opening angle of ~ 30 deg, which may naturally launch a relativistic jet. The broad consistency of our ab-initio calculations with SGRB observations shows that the merger of magnetized neutron stars can provide the basic physical conditions for the central-engine of SGRBs.
The recent discovery of the gravitational wave source GW150914 has revealed a coalescing binary black hole (BBH) with masses of $sim 30~M_odot$. Previous proposals for the origin of such a massive binary include Population III (PopIII) stars. PopIII stars are efficient producers of BBHs and of a gravitational wave background (GWB) in the $10-100$ Hz band, and also of ionizing radiation in the early Universe. We quantify the relation between the amplitude of the GWB ($Omega_{rm gw}$) and the electron scattering optical depth ($tau_{rm e}$), produced by PopIII stars, assuming that $f_{rm esc}approx 10%$ of their ionizing radiation escapes into the intergalactic medium. We find that PopIII stars would produce a GWB that is detectable by the future O5 LIGO/Virgo if $tau_{rm e} gtrsim 0.07$, consistent with the recent Planck measurement of $tau_e=0.055 pm 0.09$. Moreover, the spectral index of the background from PopIII BBHs becomes as small as ${rm d}ln Omega_{rm gw}/{rm d}ln flesssim 0.3$ at $f gtrsim 30$ Hz, which is significantly flatter than the value $sim 2/3$ generically produced by lower-redshift and less-massive BBHs. A detection of the unique flattening at such low frequencies by the O5 LIGO/Virgo will indicate the existence of a high-chirp mass, high-redshift BBH population, which is consistent with the PopIII origin. A precise characterization of the spectral shape near $30-50$ Hz by the Einstein Telescope could also constrain the PopIII initial mass function and star formation rate.
We report a new analysis of the Hubble Frontier Fields clusters Abell 2744 and MACS 0416 using wavelet decomposition to remove the cluster light, enabling the detection of highly magnified (>50x) galaxies a factor of 10x fainter in luminosity than previous studies. We find 167 galaxies at z > 6, and with this sample we are able to characterize the UV luminosity function to M_UV = -12.5 at z ~ 6, -14 at z ~ 7 and -15 at z ~ 8. We find a steep faint-end slope (alpha <-2), and with our improved statistics at the faint end we reduce the fractional uncertainty on alpha to <2% at z ~ 6 - 7 and 4% at z ~ 8. We also investigate the systematic uncertainty due to the lens modelling by using every available lens model individually and comparing the results; this systematic fractional uncertainty on alpha is <4% at all redshifts. We now directly observe galaxies in the luminosity regime where simulations predict a change in the faint-end slope of the luminosity function, yet our results provide statistically very strong evidence against any turnover in the luminosity range probed, more consistent with simulations in which stars form in lower-mass halos. Thus we find strong support for the extension of the steep luminosity function to M_UV = -13 at z > 6, consistent with the number of faint galaxies needed to reionize the Universe under standard assumptions.
182 - Barbara Ercolano 2009
We re-examine the well-known discrepancy between ionic abundances determined via the analysis of recombination lines (RLs) and collisionally excited lines (CELs). We show that abundance variations can be mimicked in a {it chemically homogeneous} medium by the presence of dense X-ray irradiated regions which present different ionisation and temperature structures from those of the more diffuse medium they are embedded in, which is predominantly ionised by extreme-ultraviolet radiation. The presence of X-ray ionised dense clumps or filaments also naturally explains the lower temperatures often measured from O {sc ii} recombination lines and from the Balmer jump when compared to temperatures determined by CELs. We discuss the implications for abundances determined via the analysis of CELs and RLs and provide a simple analytical procedure to obtain upwards corrections for CEL-determined abundance. While we show that the abundance discrepancy factor (ADF) and the Balmer Jump temperature determined from observations of the Orion Nebula can simultaneously be reproduced by this model (implying upward corrections for CELs by a factor of 1.15), we find that the required X-ray fluxes exceed the known Orions stellar and diffuse X-ray budget, if we assume that the clumps are located at the edge of the blister. We propose, however, that spatially resolved observations may be used to empirically test the model, and we outline how the framework developed in this letter may be applied in the future to objects with better constrained geometries (e.g. planetary nebulae).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا