Do you want to publish a course? Click here

The rate and latency of star formation in dense, massive clumps in the Milky Way

86   0   0.0 ( 0 )
 Added by Mark Heyer
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Newborn stars form within the localized, high density regions of molecular clouds. The sequence and rate at which stars form in dense clumps and the dependence on local and global environments are key factors in developing descriptions of stellar production in galaxies. We seek to observationally constrain the rate and latency of star formation in dense massive clumps that are distributed throughout the Galaxy and to compare these results to proposed prescriptions for stellar production. A sample of 24 micron-based Class~I protostars are linked to dust clumps that are embedded within molecular clouds selected from the APEX Telescope Large Area Survey of the Galaxy. We determine the fraction of star-forming clumps, f*, that imposes a constraint on the latency of star formation in units of a clumps lifetime. Protostellar masses are estimated from models of circumstellar environments of young stellar objects from which star formation rates are derived. Physical properties of the clumps are calculated from 870 micron dust continuum emission and NH_3 line emission. Linear correlations are identified between the star formation rate surface density, Sigma_{SFR}, and the quantities Sigma_{H2}/tau_{ff} and Sigma_{H2}/tau_{cross}, suggesting that star formation is regulated at the local scales of molecular clouds. The measured fraction of star forming clumps is 23%. Accounting for star formation within clumps that are excluded from our sample due to 24 micron saturation, this fraction can be as high as 31%. Dense, massive clumps form primarily low mass (< 1-2 msun) stars with emergent 24 micron fluxes below our sensitivity limit or are incapable of forming any stars for the initial 70% of their lifetimes. The low fraction of star forming clumps in the Galactic center relative to those located in the disk of the Milky Way is verified.



rate research

Read More

The star formation rate (SFR) of the Milky Way remains poorly known, with often-quoted values ranging from 1 to 10 solar masses per year. This situation persists despite the potential for the Milky Way to serve as the ultimate SFR calibrator for external galaxies. We show that various estimates for the Galactic SFR are consistent with one another once they have been normalized to the same initial mass function (IMF) and massive star models, converging to 1.9 +/- 0.4 M_sun/yr. However, standard SFR diagnostics are vulnerable to systematics founded in the use of indirect observational tracers sensitive only to high-mass stars. We find that absolute SFRs measured using resolved low/intermediate-mass stellar populations in Galactic H II regions are systematically higher by factors of ~2-3 as compared with calibrations for SFRs measured from mid-IR and radio emission. We discuss some potential explanations for this discrepancy and conclude that it could be allayed if (1) the power-law slope of the IMF for intermediate-mass (1.5 M_sun < m < 5 M_sun) stars were steeper than the Salpeter slope, or (2) a correction factor was applied to the extragalactic 24 micron SFR calibrations to account for the duration of star formation in individual mid-IR-bright H II regions relative to the lifetimes of O stars. Finally, we present some approaches for testing if a Galactic SFR of ~2 M_sun/yr is consistent with what we would measure if we could view the Milky Way as external observers. Using luminous radio supernova remnants and X-ray point sources, we find that the Milky Way deviates from expectations at the 1-3 sigma level, hinting that perhaps the Galactic SFR is overestimated or extragalactic SFRs need to be revised upwards.
We review progress over the past decade in observations of large-scale star formation, with a focus on the interface between extragalactic and Galactic studies. Methods of measuring gas contents and star formation rates are discussed, and updated prescriptions for calculating star formation rates are provided. We review relations between star formation and gas on scales ranging from entire galaxies to individual molecular clouds.
Several open questions on galaxy formation and evolution have their roots in the lack of a universal star formation law, that could univocally link the gas properties, e.g. its density, to the star formation rate (SFR) density. In a recent paper, we used a sample of nearby disc galaxies to infer the volumetric star formation (VSF) law, a tight correlation between the gas and the SFR volume densities derived under the assumption of hydrostatic equilibrium for the gas disc. However, due to the dearth of information about the vertical distribution of the SFR in these galaxies, we could not find a unique slope for the VSF law, but two alternative values. In this paper, we use the scale height of the SFR density distribution in our Galaxy adopting classical Cepheids (age$lesssim 200$ Myr) as tracers of star formation. We show that this latter is fully compatible with the flaring scale height expected from gas in hydrostatic equilibrium. These scale heights allowed us to convert the observed surface densities of gas and SFR into the corresponding volume densities. Our results indicate that the VSF law $rho_mathrm{SFR} propto rho_mathrm{gas}^alpha$ with $alpha approx 2$ is valid in the Milky Way as well as in nearby disc galaxies.
The relations between star formation and properties of molecular clouds are studied based on a sample of star forming regions in the Galactic Plane. Sources were selected by having radio recombination lines to provide identification of associated molecular clouds and dense clumps. Radio continuum and mid-infrared emission were used to determine star formation rates, while 13CO and submillimeter dust continuum emission were used to obtain masses of molecular and dense gas, respectively. We test whether total molecular gas or dense gas provides the best predictor of star formation rate. We also test two specific theoretical models, one relying on the molecular mass divided by the free-fall time, the other using the free-fall time divided by the crossing time. Neither is supported by the data. The data are also compared to those from nearby star forming regions and extragalactic data. The star formation efficiency, defined as star formation rate divided by mass, spreads over a large range when the mass refers to molecular gas; the standard deviation of the log of the efficiency decreases by a factor of three when the mass of relatively dense molecular gas is used rather than the mass of all the molecular gas.
156 - Sergio Molinari 2014
The cycling of material from the interstellar medium (ISM) into stars and the return of stellar ejecta into the ISM is the engine that drives the galactic ecology in normal spirals, a cornerstone in the formation and evolution of galaxies through cosmic time. Major observational and theoretical challenges need to be addressed in determining the processes responsible for converting the low-density ISM into dense molecular clouds, forming dense filaments and clumps, fragmenting them into stars, OB associations and bound clusters, and characterizing the feedback that limits the rate and efficiency of star formation. This formidable task can be now effectively attacked thanks to the combination of new global-scale surveys of the Milky Way Galactic Plane from infrared to radio wavelengths, offering the possibility of bridging the gap between local and extragalactic star formation studies. The Herschel, Spitzer and WISE mid to far infrared continuum surveys, complemented by analogue surveys from ground-based facilities in the millimetre and radio wavelengths, enables us to measure the Galactic distribution and physical properties of dust on all scales and in all components of the ISM from diffuse clouds to filamentary complexes and tens of thousands of dense clumps. A complementary suite of spectroscopic surveys in various atomic and molecular tracers is providing the chemical fingerprinting of dense clumps and filaments, as well as essential kinematic information to derive distances and thus transform panoramic data into a 3D representation. The latest results emerging from these Galaxy-scale surveys are reviewed. New insights into cloud formation and evolution, filaments and their relationship to channeling gas onto gravitationally-bound clumps, the properties of these clumps, density thresholds for gravitational collapse, and star and cluster formation rates are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا