Do you want to publish a course? Click here

Quantum Quasi-Zeno Dynamics: Transitions mediated by frequent projective measurements near the Zeno regime

78   0   0.0 ( 0 )
 Added by Thomas Elliott
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Frequent observation of a quantum system leads to quantum Zeno physics, where the system evolution is constrained to states commensurate with the measurement outcome. We show that, more generally, the system can evolve between such states through higher-order virtual processes that pass through states outside the measurement subspace. We derive effective Hamiltonians to describe this evolution, and the dependence on the time between measurements. We demonstrate application of this phenomena to prototypical quantum many-body system examples, spin chains and atoms in optical lattices, where it facilitates correlated dynamical effects.



rate research

Read More

Quantum magnetic field sensing is an important technology for material science and biology. Although experimental imperfections affect the sensitivity, repetitions of the measurements decrease the estimation uncertainty by a square root of the total number of the measurements if there are only statistical errors. However, it is difficult to precisely characterize the coherence time of the system because it fluctuates in time in realistic conditions, which induces systematic errors. In this case, due to residual bias of the measured values, estimation uncertainty cannot be lowered than a finite value even in the limit of the infinite number of measurements. On the basis of the fact that the decoherence dynamics in the so-called Zeno regime are not significant compared to other regimes, we propose a novel but very simple protocol to use measurements in the Zeno regime for reducing systematic errors. Our scheme allows the estimation uncertainty $delta ^2 omega$ to scale as $L^{1/4}$ where $L$ denotes the number of the measurements even when we cannot precisely characterize the coherence time.
We put forth, theoretically and experimentally, the possibility of drastically cooling down (purifying) thermal ensembles (baths) of solid-state spins via a sequence of projective measurements of a probe spin that couples to the bath in an arbitrary fashion. If the measurement intervals are chosen to correspond to the anti-Zeno regime of the probe-bath exchange, then a short sequence of measurements with selected outcomes is found to have an appreciable success probability. Such a sequence is shown to condition the bath evolution so that it can dramatically enhance the bath-state purity and yield a low-entropy steady state of the bath. This purified bath state persists after the measurements and can be chosen, on-demand, to allow for Zeno- or anti-Zeno- like evolution of quantum systems coupled to the purified bath. The experimental setup for observing these effects consists of a Nitrogen Vacancy (NV) center in diamond at low temperature that acts as a probe of the surrounding nuclear spin bath. The NV single-shot measurements are induced by optical fields at microsecond intervals.
78 - Jiaming Li , Tishuo Wang , Le Luo 2020
The decay of any unstable quantum state can be inhibited or enhanced by carefully tailored measurements, known as the quantum Zeno effect (QZE) or anti-Zeno effect (QAZE). To date, studies of QZE (QAZE) transitions have since expanded to various system-environment coupling, in which the time evolution can be suppressed (enhanced) not only by projective measurement but also through dissipation processes. However, a general criterion, which could extend to arbitrary dissipation strength and periodicity, is still lacking. In this letter, we show a general framework to unify QZE-QAZE effects and parity-time (PT) symmetry breaking transitions, in which the dissipative Hamiltonian associated to the measurement effect is mapped onto a PT-symmetric non- Hermitian Hamiltonian, thus applying the PT symmetry transitions to distinguish QZE (QAZE) and their crossover behavior. As a concrete example, we show that, in a two-level system periodically coupled to a dissipative environment, QZE starts at an exceptional point (EP), which separates the PT-symmetric (PTS) phase and PT-symmetry broken (PTB) phase, and ends at the resonance point (RP) of the maximum PT-symmetry breaking; while QAZE extends the rest of PTB phase and remains the whole PTS phase. Such findings reveal a hidden relation between QZE-QAZE and PTS-PTB phases in non-Hermitian quantum dynamics.
We investigate theoretically the suppression of two-body losses when the on-site loss rate is larger than all other energy scales in a lattice. This work quantitatively explains the recently observed suppression of chemical reactions between two rotational states of fermionic KRb molecules confined in one-dimensional tubes with a weak lattice along the tubes [Yan et al., Nature 501, 521-525 (2013)]. New loss rate measurements performed for different lattice parameters but under controlled initial conditions allow us to show that the loss suppression is a consequence of the combined effects of lattice confinement and the continuous quantum Zeno effect. A key finding, relevant for generic strongly reactive systems, is that while a single-band theory can qualitatively describe the data, a quantitative analysis must include multiband effects. Accounting for these effects reduces the inferred molecule filling fraction by a factor of five. A rate equation can describe much of the data, but to properly reproduce the loss dynamics with a fixed filling fraction for all lattice parameters we develop a mean-field model and benchmark it with numerically exact time-dependent density matrix renormalization group calculations.
We investigate the time evolution of an open quantum system described by a Lindblad master equation with dissipation acting only on a part of the degrees of freedom ${cal H}_0$ of the system, and targeting a unique dark state in ${cal H}_0$. We show that, in the Zeno limit of large dissipation, the density matrix of the system traced over the dissipative subspace ${cal H}_0$, evolves according to another Lindblad dynamics, with renormalized effective Hamiltonian and weak effective dissipation. This behavior is explicitly checked in the case of Heisenberg spin chains with one or both boundary spins strongly coupled to a magnetic reservoir. Moreover, the populations of the eigenstates of the renormalized effective Hamiltonian evolve in time according to a classical Markov dynamics. As a direct application of this result, we propose a computationally-efficient exact method to evaluate the nonequilibrium steady state of a general system in the limit of strong dissipation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا