No Arabic abstract
The first-order transition at $T_{rm 0} = 270$ K for the platinum-based SrPt$_2$Sb$_2$ superconductor was investigated using X-ray diffraction and magnetic susceptibility measurements. When polycrystalline SrPt$_2$Sb$_2$ was cooled down through $T_{rm 0}$, the structure was transformed from monoclinic to a modulated orthorhombic structure, and no magnetic order was formed, which illustrates the possibility of a charge density wave (CDW) transition at $T_{rm 0}$. SrPt$_2$Sb$_2$ can thus be a new example to examine the interplay of CDW and superconductivity in addition to SrPt$_2$As$_2$, BaPt$_2$As$_2$ and LaPt$_2$Si$_2$. It is unique that the average structure of the low-temperature phase has higher symmetry than that of the high-temperature phase.
We have studied the superconducting gap structure of LaPt$_2$Si$_2$ by measuring the temperature dependence of the London penetration depth shift $Deltalambda(T)$ and point contact spectroscopy of single crystals. $Deltalambda(T)$ shows an exponential temperature dependence at low temperatures, and the derived normalized superfluid density $rho_{s}(T)$ can be well described by a single-gap s-wave model. The point-contact conductance spectra can also be well fitted by an s-wave Blonder-Tinkham-Klapwijk model, where the gap value shows a typical BCS temperature and magnetic field dependence consistent with type-II superconductivity. These results suggest fully gapped superconductivity in LaPt$_2$Si$_2$, with moderately strong electron-phonon coupling.
The temperature dependence of the phonon spectrum in the superconducting transition metal dichalcogenide 2H-NbS$_2$ is measured by diffuse and inelastic x-ray scattering. A deep, wide and strongly temperature dependent softening, of the two lowest energy longitudinal phonons bands, appears along the $mathrm{Gamma M}$ symmetry line in reciprocal space. In sharp contrast to the iso-electronic compounds 2H-NbSe$_2$, the soft phonons energies are finite, even at very low temperature, and no charge density wave instability occurs, in disagreement with harmonic ab-initio calculations. We show that 2H-NbS$_2$ is at the verge of the charge density wave transition and its occurrence is only suppressed by the large anharmonic effects. Moreover, the anharmonicity and the electron phonon coupling both show a strong in-plane anisotropy.
We report the $^{121/123}$Sb-NMR/nuclear quadrupole resonance (NQR) measurements on the newly-discovered superconductor BaTi$_2$Sb$_2$O with a two-dimensional Ti$_2$O square-net layer formed with Ti$^{3+}$ (3$d^1$). NQR measurements revealed that the in-plane four-fold symmetry is broken at the Sb site below $T_{rm A} sim$ 40 K, without an internal field appearing at the Sb site. These exclude a spin-density wave (SDW)/ charge density wave (CDW) ordering with incommensurate correlations, but can be understood with the commensurate CDW ordering at $T_{rm A}$. The spin-lattice relaxation rate $1/T_1$, measured at the four-fold symmetry breaking site, decreases below superconducting (SC) transition temperature $T_{rm c}$, indicative of the microscopic coexistence of superconductivity and the CDW/SDW phase below $T_{rm A}$. Furthermore, $1/T_1$ of $^{121}$Sb-NQR shows a coherence peak just below $T_{rm c}$ and decreases exponentially at low temperatures. These results are in sharp contrast with those in cuprate and iron-based superconductors, and strongly suggest that its SC symmetry is classified to an ordinary s-wave state.
We report measurements of the electrical resistivity and ac magnetic susceptibility of single crystalline LaPt$_2$Si$_2$ under pressure, in order to investigate the interplay of superconductivity and CDW order. LaPt$_2$Si$_2$ exhibits a first order phase transition from a tetragonal to orthorhombic structure, accompanied by the onset of CDW order below $T_{rm{CDW}}$ = 76 K, while superconductivity occurs at a lower temperature of $T_{rm{c}}$ = 1.87 K. We find that the application of pressure initially suppresses the CDW transition, but enhances $T_{rm{c}}$. At pressures above 2.4 GPa, CDW order vanishes, while both $T_{rm{c}}$ and the resistivity $A$-coefficient reach a maximum value around this pressure. Our results suggest that the occurrence of a superconducting dome can be accounted for within the framework of BCS theory, where there is a maximum in the density of states upon the closure of the CDW gap.
The charge-density-wave (CDW) instability in the underdoped, pseudogap part of the cuprate phase diagram has been a major recent research focus, yet measurements of dynamic, energy-resolved CDW correlations are still in their infancy. We report a high-resolution resonant inelastic X-ray scattering (RIXS) study of the underdoped cuprate superconductor HgBa$_{2}$CuO$_{4+delta}$ ($T_c = 70$ K). At $T=250$ K, above the CDW order temperature $T_mathrm{CDW} approx 200$ K, we observe significant dynamic CDW correlations at about 40 meV. This energy scale is comparable to both the superconducting gap and the previously reported low-energy pseudogap. At $T = T_c$, a strong elastic CDW peak appears, but the dynamic correlations around 40 meV remain virtually unchanged. In addition, we observe a new feature: dynamic correlations at significantly higher energy, with a characteristic scale of about 160 meV. A similar scale was previously identified in other experiments as a high-energy pseudogap. The existence of three distinct features in the charge response is highly unusual for a CDW system, and suggests that charge order in the cuprates is closely related to the pseudogap phenomenon and more complex than previously thought. We further observe the paramagnon dispersion along [1,0], across the two-dimensional CDW wavevector $boldsymbol{q}_mathrm{CDW}$, which is consistent with magnetic excitations measured by inelastic neutron scattering. Unlike for some other cuprates, our results point to the absence of a discernible coupling between CDW and magnetic excitations.