Do you want to publish a course? Click here

Turbulence and fire-spotting effects into wild-land fire simulators

60   0   0.0 ( 0 )
 Added by Gianni Pagnini
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

This paper presents a mathematical approach to model the effects of phenomena with random nature such as turbulence and fire-spotting into the existing wildfire simulators. The formulation proposes that the propagation of the fire-front is the sum of a drifting component (obtained from an existing wildfire simulator without turbulence and fire-spotting) and a random fluctuating component. The modelling of the random effects is embodied in a probability density function accounting for the fluctuations around the fire perimeter which is given by the drifting component. In past, this formulation has been applied to include these random effects into a wildfire simulator based on an Eulerian moving interface method, namely the Level Set Method (LSM), but in this paper the same formulation is adapted for a wildfire simulator based on a Lagrangian front tracking technique, namely the Discrete Event System Specification (DEVS). The main highlight of the present study is the comparison of the performance of a Lagrangian and an Eulerian moving interface method when applied to wild-land fire propagation. Simple idealised numerical experiments are used to investigate the potential applicability of the proposed formulation to DEVS and to compare its behaviour with respect to the LSM. The results show that DEVS based wildfire propagation model qualitatively improves its performance (e.g., reproducing flank and back fire, increase in fire spread due to pre-heating of the fuel by hot air and firebrands, fire propagation across no fuel zones, secondary fire generation, dots). Though the results presented here are devoid of any validation exercise and provide only a proof of concept, they show a strong inclination towards an intended operational use. The existing LSM or DEVS based operational simulators like WRF-SFIRE and ForeFire respectively can serve as an ideal basis for the same.



rate research

Read More

In presence of strong winds, wildfires feature nonlinear behavior, possibly inducing fire-spotting. We present a global sensitivity analysis of a new sub-model for turbulence and fire-spotting included in a wildfire spread model based on a stochastic representation of the fireline. To limit the number of model evaluations, fast surrogate models based on generalized Polynomial Chaos (gPC) and Gaussian Process are used to identify the key parameters affecting topology and size of burnt area. This study investigates the application of these surrogates to compute Sobol sensitivity indices in an idealized test case. The wind is known to drive the fire propagation. The results show that it is a more general leading factor that governs the generation of secondary fires. This study also compares the performance of the surrogates for varying size and type of training sets as well as for varying parameterization and choice of algorithms. The best performance was achieved using a gPC strategy based on a sparse least-angle regression (LAR) and a low-discrepancy Haltons sequence. Still, the LAR-based gPC surrogate tends to filter out the information coming from parameters with large length-scale, which is not the case of the cleaning-based gPC surrogate. For both algorithms, sparsity ensures a surrogate can be built using an affordable number of forward model evaluations, while the model response is highly multi-scale and nonlinear. Using a sparse surrogate is thus a promising strategy to analyze new models and its dependency on input parameters in wildfire applications.
In this study, we describe how WRF-Sfire is coupled with WRF-Chem to construct WRFSC, an integrated forecast system for wildfire and smoke prediction. The integrated forecast system has the advantage of not requiring a simple plume-rise model and assumptions about the size and heat release from the fire in order to determine fire emissions into the atmosphere. With WRF-Sfire, wildfire spread, plume and plume-top heights are predicted directly, at every WRF timestep, providing comprehensive meteorology and fire emissions to the chemical transport model WRF-Chem. Evaluation of WRFSC was based on comparisons between available observations to the results of two WRFSC simulations. The study found overall good agreement between forecasted and observed fire spread and smoke transport for the Witch-Guejito fire. Also the simulated PM2.5 (fine particulate matter) peak concentrations matched the observations. However, the NO and ozone levels were underestimated in the simulations and the peak concentrations were mistimed. Determining the terminal or plume-top height is one of the most important aspects of simulating wildfire plume transport, and the study found overall good agreement between simulated and observed plume-top heights, with some (10% or less) underestimation by the simulations. One of the most promising results of the study was the agreement between passive-tracer modeled plume-top heights for the Barker Canyon fire simulation and observations. This simulation took only 13h, with the first 24h forecast ready in almost 3h, making it a possible operational tool for providing emission profiles for external chemical transport models.
129 - Shuai Liu , Zhiyuan Gu , Nan Zhang 2015
Coupling light into microdisk plays a key role in a number of applications such as resonant filters and optical sensors. While several approaches have successfully coupled light into microdisk efficiently, most of them suffer from the ultrahigh sensitivity to the environmental vibration. Here we demonstrate a robust mechanism, which is termed as end-fire injection. By connecting an input waveguide to a circular microdisk directly, the mechanism shows that light can be efficiently coupled into optical microcavity. The coupling efficiency can be as high as 0.75 when the input signals are on resonances. Our numerical results reveal that the high coupling efficiency is attributed to the constructive interference between the whispering gallery modes and the input signals. We have also shown that the end-fire injection can be further extended to the long-lived resonances with low refractive index such as n = 1.45. We believe our results will shed light on the applications of optical microcavities.
103 - A.V. Smirnov 2008
The recently developed algorithm FIRE performs the reduction of Feynman integrals to master integrals. It is based on a number of strategies, such as applying the Laporta algorithm, the s-bases algorithm, region-bases and integrating explicitly over loop momenta when possible. Currently it is being used in complicated three-loop calculations.
The effects of nonlocal and reflecting connectivity are investigated in coupled Leaky Integrate-and-Fire (LIF) elements, which assimilate the exchange of electrical signals between neurons. Earlier investigations have demonstrated that non-local and hierarchical network connectivity often induces complex synchronization patterns and chimera states in systems of coupled oscillators. In the LIF system we show that if the elements are non-locally linked with positive diffusive coupling in a ring architecture the system splits into a number of alternating domains. Half of these domains contain elements, whose potential stays near the threshold, while they are interrupted by active domains, where the elements perform regular LIF oscillations. The active domains move around the ring with constant velocity, depending on the system parameters. The idea of introducing reflecting non-local coupling in LIF networks originates from signal exchange between neurons residing in the two hemispheres in the brain. We show evidence that this connectivity induces novel complex spatial and temporal structures: for relatively extensive ranges of parameter values the system splits in two coexisting domains, one domain where all elements stay near-threshold and one where incoherent states develop with multileveled mean phase velocity distribution.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا