No Arabic abstract
The effects of nonlocal and reflecting connectivity are investigated in coupled Leaky Integrate-and-Fire (LIF) elements, which assimilate the exchange of electrical signals between neurons. Earlier investigations have demonstrated that non-local and hierarchical network connectivity often induces complex synchronization patterns and chimera states in systems of coupled oscillators. In the LIF system we show that if the elements are non-locally linked with positive diffusive coupling in a ring architecture the system splits into a number of alternating domains. Half of these domains contain elements, whose potential stays near the threshold, while they are interrupted by active domains, where the elements perform regular LIF oscillations. The active domains move around the ring with constant velocity, depending on the system parameters. The idea of introducing reflecting non-local coupling in LIF networks originates from signal exchange between neurons residing in the two hemispheres in the brain. We show evidence that this connectivity induces novel complex spatial and temporal structures: for relatively extensive ranges of parameter values the system splits in two coexisting domains, one domain where all elements stay near-threshold and one where incoherent states develop with multileveled mean phase velocity distribution.
We study synchronization dynamics of a population of pulse-coupled oscillators. In particular, we focus our attention in the interplay between networks topological disorder and its synchronization features. Firstly, we analyze synchronization time $T$ in random networks, and find a scaling law which relates $T$ to networks connectivity. Then, we carry on comparing synchronization time for several other topological configurations, characterized by a different degree of randomness. The analysis shows that regular lattices perform better than any other disordered network. The fact can be understood by considering the variability in the number of links between two adjacent neighbors. This phenomenon is equivalent to have a non-random topology with a distribution of interactions and it can be removed by an adequate local normalization of the couplings.
We study the collective dynamics of a Leaky Integrate and Fire network in which precise relative phase relationship of spikes among neurons are stored, as attractors of the dynamics, and selectively replayed at differentctime scales. Using an STDP-based learning process, we store in the connectivity several phase-coded spike patterns, and we find that, depending on the excitability of the network, different working regimes are possible, with transient or persistent replay activity induced by a brief signal. We introduce an order parameter to evaluate the similarity between stored and recalled phase-coded pattern, and measure the storage capacity. Modulation of spiking thresholds during replay changes the frequency of the collective oscillation or the number of spikes per cycle, keeping preserved the phases relationship. This allows a coding scheme in which phase, rate and frequency are dissociable. Robustness with respect to noise and heterogeneity of neurons parameters is studied, showing that, since dynamics is a retrieval process, neurons preserve stablecprecise phase relationship among units, keeping a unique frequency of oscillation, even in noisy conditions and with heterogeneity of internal parameters of the units.
Cluster synchronization is a phenomenon in which a network self-organizes into a pattern of synchronized sets. It has been shown that diverse patterns of stable cluster synchronization can be captured by symmetries of the network. Here we establish a theoretical basis to divide an arbitrary pattern of symmetry clusters into independently synchronizable cluster sets, in which the synchronization stability of the individual clusters in each set is decoupled from that in all the other sets. Using this framework, we suggest a new approach to find permanently stable chimera states by capturing two or more symmetry clusters---at least one stable and one unstable---that compose the entire fully symmetric network.
We study the dynamics of identical leaky integrate-and-fire neurons with symmetric non-local coupling. Upon varying control parameters (coupling strength, coupling range, refractory period) we investigate the systems behaviour and highlight the formation of chimera states. We show that the introduction of a refractory period enlarges the parameter region where chimera states appear and affects the chimera multiplicity.
We analyze the dynamics of two coupled identical populations of quadratic integrate-and-fire neurons, which represent the canonical model for class I neurons near the spiking threshold. The populations are heterogeneous; they include both inherently spiking and excitable neurons. The coupling within and between the populations is global via synapses that take into account the finite width of synaptic pulses. Using a recently developed reduction method based on the Lorentzian ansatz, we derive a closed system of equations for the neurons firing rates and the mean membrane potentials in both populations. The reduced equations are exact in the infinite-size limit. The bifurcation analysis of the equations reveals a rich variety of non-symmetric patterns, including a splay state, antiphase periodic oscillations, chimera-like states, also chaotic oscillations as well as bistabilities between various states. The validity of the reduced equations is confirmed by direct numerical simulations of the finite-size networks.