Do you want to publish a course? Click here

LOFAR, VLA, and Chandra observations of the Toothbrush galaxy cluster

92   0   0.0 ( 0 )
 Added by Reinout van Weeren
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present deep LOFAR observations between 120-181 MHz of the Toothbrush (RX J0603.3+4214), a cluster that contains one of the brightest radio relic sources known. Our LOFAR observations exploit a new and novel calibration scheme to probe 10 times deeper than any previous study in this relatively unexplored part of the spectrum. The LOFAR observations, when combined with VLA, GMRT, and Chandra X-ray data, provide new information about the nature of cluster merger shocks and their role in re-accelerating relativistic particles. We derive a spectral index of $alpha = -0.8 pm 0.1$ at the northern edge of the main radio relic, steepening towards the south to $alpha approx - 2$. The spectral index of the radio halo is remarkably uniform ($alpha = -1.16$, with an intrinsic scatter of $leq 0.04$). The observed radio relic spectral index gives a Mach number of $mathcal{M} = 2.8^{+0.5}_{-0.3}$, assuming diffusive shock acceleration (DSA). However, the gas density jump at the northern edge of the large radio relic implies a much weaker shock ($mathcal{M} approx 1.2$, with an upper limit of $mathcal{M} approx 1.5$). The discrepancy between the Mach numbers calculated from the radio and X-rays can be explained if either (i) the relic traces a complex shock surface along the line of sight, or (ii) if the radio relic emission is produced by a re-accelerated population of fossil particles from a radio galaxy. Our results highlight the need for additional theoretical work and numerical simulations of particle acceleration and re-acceleration at cluster merger shocks.



rate research

Read More

We present the results of Suzaku observations of the galaxy cluster 1RXS J0603.3+4214 with toothbrush radio relic. Although a shock with Mach number $M simeq 4$ is expected at the outer edge of the relic from the radio observation, our temperature measurements of the intracluster medium indicate a weaker temperature difference than what is expected. The Mach number estimated from the temperature difference at the outer edge of the relic is $M simeq 1.5$, which is significantly lower than the value estimated from the radio data even considering both statistical and systematic errors. This suggests that a diffusive shock acceleration theory in the linear test particle regime, which is commonly used to link the radio spectral index to the Mach number, is invalid for this relic. We also measured the temperature difference across the western part of the relic, where a shock with $M simeq 1.6$ is suggested from the X-ray surface brightness analysis of the XMM-Newton data, and obtained consistent results in an independent way. We searched for the non-thermal inverse Compton component in the relic region and the resultant upper limit on the flux is $2.4 times 10^{-13}$ erg cm$^{-2}$ s$^{-1}$ in the 0.3-10 keV band. The lower limit of the magnetic field strength becomes 1.6 $mu$G, which means that magnetic energy density could be more than a few $% $ of the thermal energy.
Radio halos are extended ($sim{rm Mpc}$), steep-spectrum sources found in the central region of dynamically disturbed clusters of galaxies. Only a handful of radio halos have been reported to reside in galaxy clusters with a mass $M_{500}lesssim5times10^{14},M_odot$. In this paper we present a LOFAR 144 MHz detection of a radio halo in the galaxy cluster Abell 990 with a mass of $M_{500}=(4.9pm0.3)times10^{14},M_odot$. The halo has a projected size of $sim$700$,{rm kpc}$ and a flux density of $20.2pm2.2,{rm mJy}$ or a radio power of $1.2pm0.1times10^{24},{rm W,Hz}^{-1}$ at the cluster redshift ($z=0.144$) which makes it one of the two halos with the lowest radio power detected to date. Our analysis of the emission from the cluster with Chandra archival data using dynamical indicators shows that the cluster is not undergoing a major merger but is a slightly disturbed system with a mean temperature of $5,{rm keV}$. The low X-ray luminosity of $L_{X}=(3.66pm0.08)times10^{44},{rm ergs,s}^{-1}$ in the 0.1--2.4 keV band implies that the cluster is one of the least luminous systems known to host a radio halo. Our detection of the radio halo in Abell 990 opens the possibility of detecting many more halos in poorly-explored less-massive clusters with low-frequency telescopes such as LOFAR, MWA (Phase II) and uGMRT.
Previous studies have shown that CIZA J2242.8+5301 (the Sausage cluster, $z=0.192$) is a massive merging galaxy cluster that hosts a radio halo and multiple relics. In this paper we present deep, high fidelity, low-frequency images made with the LOw-Frequency Array (LOFAR) between 115.5 and 179 MHz. These images, with a noise of 140 mJy/beam and a resolution of $theta_{text{beam}}=7.3times5.3$, are an order of magnitude more sensitive and five times higher resolution than previous low-frequency images of this cluster. We combined the LOFAR data with the existing GMRT (153, 323, 608 MHz) and WSRT (1.2, 1.4, 1.7, 2.3 GHz) data to study the spectral properties of the radio emission from the cluster. Assuming diffusive shock acceleration (DSA), we found Mach numbers of $mathcal{M}_{n}=2.7{}_{-0.3}^{+0.6}$ and $mathcal{M}_{s}=1.9_{-0.2}^{+0.3}$ for the northern and southern shocks. The derived Mach number for the northern shock requires an acceleration efficiency of several percent to accelerate electrons from the thermal pool, which is challenging for DSA. Using the radio data, we characterised the eastern relic as a shock wave propagating outwards with a Mach number of $mathcal{M}_{e}=2.4_{-0.3}^{+0.5}$, which is in agreement with $mathcal{M}_{e}^{X}=2.5{}_{-0.2}^{+0.6}$ that we derived from Suzaku data. The eastern shock is likely to be associated with the major cluster merger. The radio halo was measured with a flux of $346pm64,text{mJy}$ at $145,text{MHz}$. Across the halo, we observed a spectral index that remains approximately constant ($alpha^{text{145 MHz-2.3 GHz}}_{text{across (sim)1 Mpc}^2}=-1.01pm0.10$) after the steepening in the post-shock region of the northern relic. This suggests a generation of post-shock turbulence that re-energies aged electrons.
We present LOFAR $120-168$ MHz images of the merging galaxy cluster Abell 1240 that hosts double radio relics. In combination with the GMRT $595-629$ MHz and VLA $2-4$ GHz data, we characterised the spectral and polarimetric properties of the radio emission. The spectral indices for the relics steepen from their outer edges towards the cluster centre and the electric field vectors are approximately perpendicular to the major axes of the relics. The results are consistent with the picture that these relics trace large-scale shocks propagating outwards during the merger. Assuming diffusive shock acceleration (DSA), we obtain shock Mach numbers of $mathcal{M}=2.4$ and $2.3$ for the northern and southern shocks, respectively. For $mathcal{M}lesssim3$ shocks, a pre-existing population of mildly relativistic electrons is required to explain the brightness of the relics due to the high ($>10$ per cent) particle acceleration efficiency required. However, for $mathcal{M}gtrsim4$ shocks the required efficiency is $gtrsim1%$ and $gtrsim0.5%$, respectively, which is low enough for shock acceleration directly from the thermal pool. We used the fractional polarization to constrain the viewing angle to $geqslant(53pm3)^circ$ and $geqslant(39pm5)^circ$ for the northern and southern shocks, respectively. We found no evidence for diffuse emission in the cluster central region. If the halo spans the entire region between the relics ($sim1.8,text{Mpc}$) our upper limit on the power is $P_text{1.4 GHz}=(1.4pm0.6)times10^{23},text{W}text{Hz}^{-1}$ which is approximately equal to the anticipated flux from a cluster of this mass. However, if the halo is smaller than this, our constraints on the power imply that the halo is underluminous.
166 - H. Akamatsu , M. Mizuno , N. Ota 2016
We present the results of deep 140 ks Suzaku X-ray observations of the north-east (NE) radio relic of the merging galaxy cluster Abell2255. The temperature structure of Abell2255 is measured out to 0.9 times the virial radius (1.9 Mpc) in the NE direction for the first time. The Suzaku temperature map of the central region suggests a complex temperature distribution, which agrees with previous work. Additionally, on a larger-scale, we confirm that the temperature drops from 6 keV around the cluster center to 3 keV at the outskirts, with two discontinuities at {it r}$sim$5arcmin~(450 kpc) and $sim$12arcmin~(1100 kpc) from the cluster center. Their locations coincide with surface brightness discontinuities marginally detected in the XMM-Newton image, which indicates the presence of shock structures. From the temperature drop, we estimate the Mach numbers to be ${cal M}_{rm inner}sim$1.2 and, ${cal M}_{rm outer}sim$1.4. The first structure is most likely related to the large cluster core region ($sim$350--430 kpc), and its Mach number is consistent with the XMM-Newton observation (${cal M}sim$1.24: Sakelliou & Ponman 2006). Our detection of the second temperature jump, based on the Suzaku key project observation, shows the presence of a shock structure across the NE radio relic. This indicates a connection between the shock structure and the relativistic electrons that generate radio emission. Across the NE radio relic, however, we find a significantly lower temperature ratio ($T_1/T_2sim1.44pm0.16$ corresponds to~${cal M}_{rm X-ray}sim1.4$) than the value expected from radio wavelengths, based on the standard diffusive shock acceleration mechanism ($T_1/T_2>$ 3.2 or ${cal M}_{rm Radio}>$ 2.8).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا