No Arabic abstract
We present the results of Suzaku observations of the galaxy cluster 1RXS J0603.3+4214 with toothbrush radio relic. Although a shock with Mach number $M simeq 4$ is expected at the outer edge of the relic from the radio observation, our temperature measurements of the intracluster medium indicate a weaker temperature difference than what is expected. The Mach number estimated from the temperature difference at the outer edge of the relic is $M simeq 1.5$, which is significantly lower than the value estimated from the radio data even considering both statistical and systematic errors. This suggests that a diffusive shock acceleration theory in the linear test particle regime, which is commonly used to link the radio spectral index to the Mach number, is invalid for this relic. We also measured the temperature difference across the western part of the relic, where a shock with $M simeq 1.6$ is suggested from the X-ray surface brightness analysis of the XMM-Newton data, and obtained consistent results in an independent way. We searched for the non-thermal inverse Compton component in the relic region and the resultant upper limit on the flux is $2.4 times 10^{-13}$ erg cm$^{-2}$ s$^{-1}$ in the 0.3-10 keV band. The lower limit of the magnetic field strength becomes 1.6 $mu$G, which means that magnetic energy density could be more than a few $% $ of the thermal energy.
We present the results of deep 140 ks Suzaku X-ray observations of the north-east (NE) radio relic of the merging galaxy cluster Abell2255. The temperature structure of Abell2255 is measured out to 0.9 times the virial radius (1.9 Mpc) in the NE direction for the first time. The Suzaku temperature map of the central region suggests a complex temperature distribution, which agrees with previous work. Additionally, on a larger-scale, we confirm that the temperature drops from 6 keV around the cluster center to 3 keV at the outskirts, with two discontinuities at {it r}$sim$5arcmin~(450 kpc) and $sim$12arcmin~(1100 kpc) from the cluster center. Their locations coincide with surface brightness discontinuities marginally detected in the XMM-Newton image, which indicates the presence of shock structures. From the temperature drop, we estimate the Mach numbers to be ${cal M}_{rm inner}sim$1.2 and, ${cal M}_{rm outer}sim$1.4. The first structure is most likely related to the large cluster core region ($sim$350--430 kpc), and its Mach number is consistent with the XMM-Newton observation (${cal M}sim$1.24: Sakelliou & Ponman 2006). Our detection of the second temperature jump, based on the Suzaku key project observation, shows the presence of a shock structure across the NE radio relic. This indicates a connection between the shock structure and the relativistic electrons that generate radio emission. Across the NE radio relic, however, we find a significantly lower temperature ratio ($T_1/T_2sim1.44pm0.16$ corresponds to~${cal M}_{rm X-ray}sim1.4$) than the value expected from radio wavelengths, based on the standard diffusive shock acceleration mechanism ($T_1/T_2>$ 3.2 or ${cal M}_{rm Radio}>$ 2.8).
We present LOFAR $120-168$ MHz images of the merging galaxy cluster Abell 1240 that hosts double radio relics. In combination with the GMRT $595-629$ MHz and VLA $2-4$ GHz data, we characterised the spectral and polarimetric properties of the radio emission. The spectral indices for the relics steepen from their outer edges towards the cluster centre and the electric field vectors are approximately perpendicular to the major axes of the relics. The results are consistent with the picture that these relics trace large-scale shocks propagating outwards during the merger. Assuming diffusive shock acceleration (DSA), we obtain shock Mach numbers of $mathcal{M}=2.4$ and $2.3$ for the northern and southern shocks, respectively. For $mathcal{M}lesssim3$ shocks, a pre-existing population of mildly relativistic electrons is required to explain the brightness of the relics due to the high ($>10$ per cent) particle acceleration efficiency required. However, for $mathcal{M}gtrsim4$ shocks the required efficiency is $gtrsim1%$ and $gtrsim0.5%$, respectively, which is low enough for shock acceleration directly from the thermal pool. We used the fractional polarization to constrain the viewing angle to $geqslant(53pm3)^circ$ and $geqslant(39pm5)^circ$ for the northern and southern shocks, respectively. We found no evidence for diffuse emission in the cluster central region. If the halo spans the entire region between the relics ($sim1.8,text{Mpc}$) our upper limit on the power is $P_text{1.4 GHz}=(1.4pm0.6)times10^{23},text{W}text{Hz}^{-1}$ which is approximately equal to the anticipated flux from a cluster of this mass. However, if the halo is smaller than this, our constraints on the power imply that the halo is underluminous.
We present deep LOFAR observations between 120-181 MHz of the Toothbrush (RX J0603.3+4214), a cluster that contains one of the brightest radio relic sources known. Our LOFAR observations exploit a new and novel calibration scheme to probe 10 times deeper than any previous study in this relatively unexplored part of the spectrum. The LOFAR observations, when combined with VLA, GMRT, and Chandra X-ray data, provide new information about the nature of cluster merger shocks and their role in re-accelerating relativistic particles. We derive a spectral index of $alpha = -0.8 pm 0.1$ at the northern edge of the main radio relic, steepening towards the south to $alpha approx - 2$. The spectral index of the radio halo is remarkably uniform ($alpha = -1.16$, with an intrinsic scatter of $leq 0.04$). The observed radio relic spectral index gives a Mach number of $mathcal{M} = 2.8^{+0.5}_{-0.3}$, assuming diffusive shock acceleration (DSA). However, the gas density jump at the northern edge of the large radio relic implies a much weaker shock ($mathcal{M} approx 1.2$, with an upper limit of $mathcal{M} approx 1.5$). The discrepancy between the Mach numbers calculated from the radio and X-rays can be explained if either (i) the relic traces a complex shock surface along the line of sight, or (ii) if the radio relic emission is produced by a re-accelerated population of fossil particles from a radio galaxy. Our results highlight the need for additional theoretical work and numerical simulations of particle acceleration and re-acceleration at cluster merger shocks.
We present the results of Suzaku and Chandra observations of the galaxy cluster RXC J1053.7+5453 ($z=0.0704$), which contains a radio relic. The radio relic is located at the distance of $sim 540$ kpc from the X-ray peak toward the west. We measured the temperature of this cluster for the first time. The resultant temperature in the center is $ sim 1.3$ keV, which is lower than the value expected from the X-ray luminosity - temperature and the velocity dispersion - temperature relation. Though we did not find a significant temperature jump at the outer edge of the relic, our results suggest that the temperature decreases outward across the relic. Assuming the existence of the shock at the relic, its Mach number becomes $M simeq 1.4 $. A possible spatial variation of Mach number along the relic is suggested. Additionally, a sharp surface brightness edge is found at the distance of $sim 160$ kpc from the X-ray peak toward the west in the Chandra image. We performed X-ray spectral and surface brightness analyses around the edge with Suzaku and Chandra data, respectively. The obtained surface brightness and temperature profiles suggest that this edge is not a shock but likely a cold front. Alternatively, it cannot be ruled out that thermal pressure is really discontinuous across the edge. In this case, if the pressure across the surface brightness edge is in equilibrium, other forms of pressure sources, such as cosmic-rays, are necessary. We searched for the non-thermal inverse Compton component in the relic region. Assuming the photon index $ Gamma = 2.0$, the resultant upper limit of the flux is $1.9 times 10^{-14} {rm erg s^{-1} cm^{-2}}$ for $4.50 times 10^{-3} {rm deg^{2}}$ area in the 0.3-10 keV band, which implies that the lower limit of magnetic field strength becomes $ 0.7 {rm mu G}$.
Content: We present the results from $Suzaku$ observations of the merging cluster of galaxies CIZA J2242.8+5301 at $z$=0.192. Aims. To study the physics of gas heating and particle acceleration in cluster mergers, we investigated the X-ray emission from CIZA J2242.8+5301, which hosts two giant radio relics in the northern/southern part of the cluster. Methods. We analyzed data from three-pointed Suzaku observations of CIZA J2242.8+5301 to derive the temperature distribution in four different directions. Results: The Intra-Cluster Medium (ICM) temperature shows a remarkable drop from 8.5$_{-0.6}^{+0.8}$ keV to 2.7$_{-0.4}^{+0.7}$ keV across the northern radio relic. The temperature drop is consistent with a Mach number ${cal M}_n=2.7^{+0.7}_{-0.4}$ and a shock velocity $v_{shock:n}=2300_{-400}^{+700}rm,km,s^{-1}$. We also confirm the temperature drop across the southern radio relic. However, the ICM temperature beyond this relic is much higher than beyond the northern one, which gives a Mach number ${cal M}_s=1.7^{+0.4}_{-0.3}$ and shock velocity $v_{shock:s}=2040_{-410}^{+550}rm ,km,s^{-1}$. These results agree with other systems showing a relationship between the radio relics and shock fronts which are induced by merging activity. We compare the X-ray derived Mach numbers with the radio derived Mach numbers from the radio spectral index under the assumption of diffusive shock acceleration in the linear test particle regime. For the northern radio relic, the Mach numbers derived from X-ray and radio observations agree with each other. Based on the shock velocities, we estimate that CIZA J2242.8+5301 is observed approximately 0.6 Gyr after core passage. The magnetic field pressure at the northern relic is estimated to be 9% of the thermal pressure.