Do you want to publish a course? Click here

Brillouin Scattering Self-Cancellation

198   0   0.0 ( 0 )
 Added by Paulo Dainese
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The interaction between light and acoustic phonons is strongly modified in sub-wavelength confinement, and has led to the demonstration and control of Brillouin scattering in photonic structures such as nano-scale optical waveguides and cavities. Besides the small optical mode volume, two physical mechanisms come into play simultaneously: a volume effect caused by the strain induced refractive index perturbation (known as photo-elasticity), and a surface effect caused by the shift of the optical boundaries due to mechanical vibrations. As a result proper material and structure engineering allows one to control each contribution individually. In this paper, we experimentally demonstrate the perfect cancellation of Brillouin scattering by engineering a silica nanowire with exactly opposing photo-elastic and moving-boundary effects. This demonstration provides clear experimental evidence that the interplay between the two mechanisms is a promising tool to precisely control the photon-phonon interaction, enhancing or suppressing it.



rate research

Read More

We compute the SBS gain for a metamaterial comprising a cubic lattice of dielectric spheres suspended in a background dielectric material. Theoretical methods are presented to calculate the optical, acoustic, and opto-acoustic parameters that describe the SBS properties of the material at long wavelengths. Using the electromagnetic and strain energy densities we accurately characterise the optical and acoustic properties of the metamaterial. From a combination of energy density methods and perturbation theory, we recover the appropriate terms of the photoelastic tensor for the metamaterial. We demonstrate that electrostriction is not necessarily the dominant mechanism in the enhancement and suppression of the SBS gain coefficient in a metamaterial, and that other parameters, such as the Brillouin linewidth, can dominate instead. Examples are presented that exhibit an order of magnitude enhancement in the SBS gain as well as perfect suppression.
Using full opto-acoustic numerical simulations, we demonstrate enhancement and suppression of the SBS gain in a metamaterial comprising a subwavelength cubic array of dielectric spheres suspended in a dielectric background material. We develop a general theoretical framework and present several numerical examples using technologically important materials. For As$_2$S$_3$ spheres in silicon, we achieve a gain enhancement of more than an order of magnitude compared to pure silicon, and for GaAs spheres in silicon, full suppression is obtained. The gain for As$_2$S$_3$ glass can also be strongly suppressed by embedding silica spheres. The constituent terms of the gain coefficient are shown to depend in a complex way on the filling fraction. We find that electrostriction is the dominant effect behind the control of SBS in bulk media.
Here we identify a new form of optomechanical coupling in gas-filled hollow-core fibers. Stimulated forward Brillouin scattering is observed in air in the core of a photonic bandgap fiber. A single resonance is observed at 35 MHz, which corresponds to the first excited axial-radial acoustic mode in the air-filled core. The linewidth and coupling strengths are determined by the acoustic loss and electrostrictive coupling in air, respectively. A simple analytical model, refined by numerical simulations, is developed that accurately predicts the Brillouin coupling strength and frequency from the gas and fiber parameters. Since this form of Brillouin coupling depends strongly on both the acoustic and dispersive optical properties of the gas within the fiber, this new type of optomechanical interaction is highly tailorable. These results allow for forward Brillouin spectroscopy in dilute gases, could be useful for sensing and will present a power and noise limitation for certain applications.
Stimulated Brillouin scattering (SBS) has been demonstrated in silicon waveguides in recent years. However, due to the weak interaction between photons and acoustic phonons in these waveguides, long interaction length is typically necessary. Here, we experimentally show that forward stimulated Brillouin scattering in a short interaction length of a 20 um radius silicon microring resonator could give 1.2 dB peak gain at only 10mW coupled pump power. The experimental results demonstrate that both optical and acoustic modes can have efficient interaction in a short interaction length. The observed Brillouin gain varies with coupled pump power in good agreement with theoretical prediction. The work shows the potential of SBS in silicon for moving the demonstrated fiber SBS applications to the integrated silicon photonics platform.
We theoretically investigate a new class of silicon waveguides for achieving Stimulated Brillouin Scattering (SBS) in the mid-infrared (MIR). The waveguide consists of a rectangular core supporting a low-loss optical mode, suspended in air by a series of transverse ribs. The ribs are patterned to form a finite quasi-one-dimensional phononic crystal, with the complete stopband suppressing the transverse leakage of acoustic waves, and confining them to the core of the waveguide. We derive a theoretical formalism that can be used to compute the opto-acoustic interaction in such periodic structures, and find forward intramodal-SBS gains up to $1750~text{m}^{-1}text{W}^{-1}$, which compares favorably with the proposed MIR SBS designs based on buried germanium waveguides. This large gain is achieved thanks to the nearly complete suppression of acoustic radiative losses.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا