Do you want to publish a course? Click here

Robustness of oscillatory $alpha^2$ dynamos in spherical wedges

190   0   0.0 ( 0 )
 Added by Elizabeth Cole
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the connection between spherical wedge and full spherical shell geometries using simple mean-field $alpha^2$ dynamos. We solve the equations for a one-dimensional time-dependent mean-field dynamo to examine the effects of varying the polar angle $theta_0$ between the latitudinal boundaries and the poles in spherical coordinates. We investigate the effects of turbulent magnetic diffusivity and $alpha$ effect profiles as well as different latitudinal boundary conditions to isolate parameter regimes where oscillatory solutions are found. Finally, we add shear along with a damping term mimicking radial gradients to study the resulting dynamo regimes. We find that the commonly used perfect conductor boundary condition leads to oscillatory $alpha^2$ dynamo solutions only if the wedge boundary is at least one degree away from the poles. Other boundary conditions always produce stationary solutions. By varying the profile of the turbulent magnetic diffusivity alone, oscillatory solutions are achieved with models extending to the poles, but the magnetic field is strongly concentrated near the poles and the oscillation period is very long. By introducing radial shear and a damping term mimicking radial gradients, we again see oscillatory dynamos, and the direction of drift follows the Parker--Yoshimura rule. Oscillatory solutions in the weak shear regime are found only in the wedge case with $theta_0 = 1^circ$ and perfect conductor boundaries. A reduced $alpha$ effect near the poles with a turbulent diffusivity concentrated toward the equator yields oscillatory dynamos with equatorward migration and reproduces best the solutions in spherical wedges.



rate research

Read More

We study activity waves of the kind that determine cyclic magnetic activity of various stars, including the Sun, as a more general physical rather than a purely astronomical problem. We try to identify resonances which are expected to occur when a mean-field dynamo excites waves of quasi-stationary magnetic field in two distinct spherical layers. We isolate some features that can be associated with resonances in the profiles of energy or frequency plotted versus a dynamo governing parameter. Rather unexpectedly however the resonances in spherical dynamos take a much less spectacular form than resonances in many more familiar branches of physics. In particular, we find that the magnitudes of resonant phenomena are much smaller than seem detectable by astronomical observations, and plausibly any related effects in laboratory dynamo experiments (which of course are not in gravitating spheres!) are also small. We discuss specific features relevant to resonant phenomena in spherical dynamos, and find parametric resonance to be the most pronounced type of resonance phenomena. Resonance conditions for these dynamo wave resonances are rather different from those for more conventional branches of physics. We suggest that the relative insignificance of the phenomenon in this case is because the phenomena of excitation and propagation of the activity waves are not well-separated from each other and this, together with the nonlinear nature of more-or-less realistic dynamos, suppress the resonances and makes them much less pronounced than resonant effects, for example in optics.
Magnetic helicity fluxes in turbulently driven alpha^2 dynamos are studied to demonstrate their ability to alleviate catastrophic quenching. A one-dimensional mean-field formalism is used to achieve magnetic Reynolds numbers of the order of 10^5. We study both diffusive magnetic helicity fluxes through the mid-plane as well as those resulting from the recently proposed alternate dynamic quenching formalism. By adding shear we make a parameter scan for the critical values of the shear and forcing parameters for which dynamo action occurs. For this $alphaOmega$ dynamo we find that the preferred mode is antisymmetric about the mid-plane. This is also verified in 3-D direct numerical simulations.
78 - P. J. Kapyla (1 , 2 , 3 2016
(abidged) Context: Stellar convection zones are characterized by vigorous high-Reynolds number turbulence at low Prandtl numbers. Aims: We study the dynamo and differential rotation regimes at varying levels of viscous, thermal, and magnetic diffusion. Methods: We perform three-dimensional simulations of stratified fully compressible magnetohydrodynamic convection in rotating spherical wedges at various thermal and magnetic Prandtl numbers (from 0.25 to 2 and 5, respectively). Results: We find that the rotation profiles for high thermal diffusivity show a monotonically increasing angular velocity from the bottom of the convection zone to the top and from the poles toward the equator. For sufficiently rapid rotation, a region of negative radial shear develops at mid-latitudes as the thermal diffusivity is decreased. This coincides with a change in the dynamo mode from poleward propagating activity belts to equatorward propagating ones. Furthermore, the cyclic solutions disappear at the highest magnetic Reynolds numbers. The total magnetic energy increases with the magnetic Reynolds number in the range studied here ($5-151$), but the energies of the mean magnetic fields level off at high magnetic Reynolds numbers. The differential rotation is strongly affected by the magnetic fields and almost vanishes at the highest magnetic Reynolds numbers. In some of our most turbulent cases we find that two regimes are possible where either differential rotation is strong and mean magnetic fields relatively weak or vice versa. Conclusions: Our simulations indicate a strong non-linear feedback of magnetic fields on differential rotation, leading to qualitative changes in the behaviors of large-scale dynamos at high magnetic Reynolds numbers. Furthermore, we do not find indications of the simulations approaching an asymptotic regime where the results would be independent of diffusion coefficients.
We present nonlinear mean-field alpha-Omega dynamo simulations in spherical geometry with simplified profiles of kinematic alpha effect and shear. We take magnetic helicity evolution into account by solving a dynamical equation for the magnetic alpha effect. This gives a consistent description of the quenching mechanism in mean-field dynamo models. The main goal of this work is to explore the effects of this quenching mechanism in solar-like geometry, and in particular to investigate the role of magnetic helicity fluxes, specifically diffusive and Vishniac-Cho (VC) fluxes, at large magnetic Reynolds numbers (Rm). For models with negative radial shear or positive latitudinal shear, the magnetic alpha effect has predominantly negative (positive) sign in the northern (southern) hemisphere. In the absence of fluxes, we find that the magnetic energy follows an Rm^-1 dependence, as found in previous works. This catastrophic quenching is alleviated in models with diffusive magnetic helicity fluxes resulting in magnetic fields comparable to the equipartition value even for Rm=10^7. On the other hand, models with a shear-driven Vishniac-Cho flux show an increase of the amplitude of the magnetic field with respect to models without fluxes, but only for Rm<10^4. This is mainly a consequence of assuming a vacuum outside the Sun which cannot support a significant VC flux across the boundary. However, in contrast with the diffusive flux, the VC flux modifies the distribution of the magnetic field. In addition, if an ill-determined scaling factor in the expression for the VC flux is large enough, subcritical dynamo action is possible that is driven by the action of shear and the divergence of current helicity flux.
Zeldovichs stretch-twist fold (STF) dynamo provided a breakthrough in conceptual understanding of fast dynamos, including fluctuation or small scale dynamos. We study the evolution and saturation behaviour of two types of Bakers map dynamos, which have been used to model Zeldovichs STF dynamo process. Using such maps allows one to analyze dynamos at much higher magnetic Reynolds numbers $R_M$ as compared to direct numerical simulations. In the 2-strip map dynamo there is constant constructive folding while the 4-strip map dynamo also allows the possibility of field reversal. Incorporating a diffusive step parameterised by $R_M$, we find that the magnetic field $B(x)$ is amplified only above a critical $R_M=R_{crit} sim 4$ for both types of dynamos. We explore the saturation of these dynamos in 3 ways; by a renormalized decrease of the effective $R_M$ (Case I) or due to a decrease in the efficiency of field amplification by stretching (Case II), or a combination of both effects (Case III). For Case I, we show that $B(x)$ in the saturated state, for both types of maps, goes back to the marginal eigenfunction, which is obtained for the critical $R_M=R_{crit}$. This is independent of the initial $R_M=R_{M0}$. On the other hand in Case II, for the 2-strip map, we show that $B(x)$ now saturates preserving the structure of the kinematic eigenfunction. Thus the energy is transferred to larger scales in Case I but remains at the smallest resistive scales in Case II. For the 4-strip map, the $B(x)$ oscillates with time, although with a structure similar to the kinematic eigenfunction. Interestingly, the saturated state for Case III shows an intermediate behaviour, with $B(x)$ now similar to the kinematic eigenfunction for an intermediate $R_M=R_{sat}$, with $R_{M0}>R_{sat}>R_{crit}$. These saturation properties are akin to the ones discussed in the context of fluctuation dynamos.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا