No Arabic abstract
The Gaia ESO Public Spectroscopic Survey (GES) is providing the astronomical community with high-precision measurements of many stellar parameters including radial velocities (RVs) of stars belonging to several young clusters and star-forming regions. One of the main goals of the young cluster observations is to study of their dynamical evolution and provide insight into their future, revealing if they will eventually disperse to populate the field, rather than evolve into bound open clusters. In this paper we report the analysis of the dynamical state of L1688 in the $rho$~Ophiuchi molecular cloud using the dataset provided by the GES consortium. We performed the membership selection of the more than 300 objects observed. Using the presence of the lithium absorption and the location in the Hertzspung-Russell diagram, we identify 45 already known members and two new association members. We provide accurate RVs for all 47 confirmed members.A dynamical analysis, after accounting for unresolved binaries and errors, shows that the stellar surface population of L1688 has a velocity dispersion $sigma sim$1.14$pm$0.35 km s$^{-1}$ that is consistent with being in virial equilibrium and is bound with a $sim$80% probability. We also find a velocity gradient in the stellar surface population of $sim$1.0 km s$^{-1}$pc$^{-1}$ in the northwest/southeast direction, which is consistent with that found for the pre-stellar dense cores, and we discuss the possibility of sequential and triggered star formation in L1688.
The extensive stellar spectroscopic datasets that are available for studies in Galactic Archeaology thanks to, for example, the Gaia-ESO Survey, now benefit from having a significant number of targets that overlap with asteroseismology projects such as Kepler, K2 and CoRoT. Combining the measurements from spectroscopy and asteroseismology allows us to attain greater accuracy with regard to the stellar parameters needed to characterise the stellar populations of the Milky Way. The aim of this Gaia-ESO Survey special project is to produce a catalogue of self-consistent stellar parameters by combining measurements from high-resolution spectroscopy and precision asteroseismology. We carried out an iterative analysis of 90 K2@Gaia-ESO red giants. The spectroscopic values of Teff were used as input in the seismic analysis to obtain log(g) values. The seismic estimates of log(g) were then used to re-determine the spectroscopic values of Teff and [Fe/H]. Only one iteration was required to obtain parameters that are in good agreement for both methods and thus, to obtain the final stellar parameters. A detailed analysis of outliers was carried out to ensure a robust determination of the parameters. The results were then combined with Gaia DR2 data to compare the seismic log(g) with a parallax-based log(g) and to investigate instances of variations in the velocity and possible binaries within the dataset. This analysis produced a high-quality catalogue of stellar parameters for 90 red giant stars observed by both K2 and Gaia-ESO that were determined through iterations between spectroscopy and asteroseismology. We compared the seismic gravities with those based on Gaia parallaxes to find an offset which is similar to other studies that have used asteroseismology. Our catalogue also includes spectroscopic chemical abundances and radial velocities, as well as indicators for possible binary detections.
The Gaia-ESO survey (GES) is now in its fifth and last year of observations, and has already produced tens of thousands of high-quality spectra of stars in all Milky Way components. This paper presents the strategy behind the selection of astrophysical calibration targets, ensuring that all GES results on radial velocities, atmospheric parameters, and chemical abundance ratios will be both internally consistent and easily comparable with other literature results, especially from other large spectroscopic surveys and from Gaia. The calibration of GES is particularly delicate because of: (i) the large space of parameters covered by its targets, ranging from dwarfs to giants, from O to M stars, and with a large range of metallicities, as well as including fast rotators, emission line objects, stars affected by veiling and so on; (ii) the variety of observing setups, with different wavelength ranges and resolution; and (iii) the choice of analyzing the data with many different state-of-the art methods, each stronger in a different region of the parameter space, which ensures a better understanding of systematic uncertainties. An overview of the GES calibration and homogenization strategy is also given, along with some examples of the usage and results of calibrators in GES iDR4 - the fourth internal GES data release, that will form the basis of the next GES public data release. The agreement between GES iDR4 recommended values and reference values for the calibrating objects are very satisfactory. The average offsets and spreads are generally compatible with the GES measurement errors, which in iDR4 data already meet the requirements set by the main GES scientific goals.
The young (~2 Myr) cluster Chamaeleon I is one of the closest laboratories to study the early stages of star cluster dynamics in a low-density environment. We studied its structural and kinematical properties combining parameters from the high-resolution spectroscopic survey Gaia-ESO with data from the literature. Our main result is the evidence of a large discrepancy between the velocity dispersion (sigma = 1.14 pm 0.35 km s^{-1}) of the stellar population and the dispersion of the pre-stellar cores (~0.3 km s^{-1}) derived from submillimeter observations. The origin of this discrepancy, which has been observed in other young star clusters is not clear. It may be due to either the effect of the magnetic field on the protostars and the filaments, or to the dynamical evolution of stars driven by two-body interactions. Furthermore, the analysis of the kinematic properties of the stellar population put in evidence a significant velocity shift (~1 km s^{-1}) between the two sub-clusters located around the North and South main clouds. This result further supports a scenario, where clusters form from the evolution of multiple substructures rather than from a monolithic collapse. Using three independent spectroscopic indicators (the gravity indicator $gamma$, the equivalent width of the Li line, and the H_alpha 10% width), we performed a new membership selection. We found six new cluster members located in the outer region of the cluster. Starting from the positions and masses of the cluster members, we derived the level of substructure Q, the surface density Sigma and the level of mass segregation $Lambda_{MSR}$ of the cluster. The comparison between these structural properties and the results of N-body simulations suggests that the cluster formed in a low density environment, in virial equilibrium or supervirial, and highly substructured.
Context. The origin and dynamical evolution of star clusters is an important topic in stellar astrophysics. Several models have been proposed to understand the formation of bound and unbound clusters and their evolution, and these can be tested by examining the kinematical and dynamical properties of clusters over a wide range of ages and masses. Aims. We use the Gaia-ESO Survey products to study four open clusters (IC 2602, IC 2391, IC 4665, and NGC 2547) that lie in the age range between 20 and 50 Myr. Methods. We employ the gravity index $gamma$ and the equivalent width of the lithium line at 6708 $AA$, together with effective temperature $rm{T_{eff}}$, and the metallicity of the stars in order to discard observed contaminant stars. Then, we derive the cluster radial velocity dispersions $sigma_c$, the total cluster mass $rm{M}_{tot}$, and the half mass radius $r_{hm}$. Using the $Gaia$-DR1 TGAS catalogue, we independently derive the intrinsic velocity dispersion of the clusters from the astrometric parameters of cluster members. Results. The intrinsic radial velocity dispersions derived by the spectroscopic data are larger than those derived from the TGAS data, possibly due to the different masses of the considered stars. Using $rm{M}_{tot}$ and $r_{hm}$ we derive the virial velocity dispersion $sigma_{vir}$ and we find that three out of four clusters are supervirial. This result is in agreement with the hypothesis that these clusters are dispersing, as predicted by the residual gas expulsion scenario. However, recent simulations show that the virial ratio of young star clusters may be overestimated if it is determined using the global velocity dispersion, since the clusters are not fully relaxed.
Investigating the chemical homogeneity of stars born from the same molecular cloud at virtually the same time is very important for our understanding of the chemical enrichment of the interstellar medium and with it the chemical evolution of the Galaxy. One major cause of inhomogeneities in the abundances of open clusters is stellar evolution of the cluster members. In this work, we investigate variations in the surface chemical composition of member stars of the old open cluster M67 as a possible consequence of atomic diffusion effects taking place during the main-sequence phase. The abundances used are obtained from high-resolution UVES/FLAMES spectra within the framework of the Gaia-ESO Survey. We find that the surface abundances of stars on the main sequence decrease with increasing mass reaching a minimum at the turn-off. After deepening of the convective envelope in sub-giant branch stars, the initial surface abundances are restored. We found the measured abundances to be consistent with the predictions of stellar evolutionary models for a cluster with the age and metallicity of M67. Our findings indicate that atomic diffusion poses a non-negligible constraint on the achievable precision of chemical tagging methods.