Do you want to publish a course? Click here

Large and exact quantum degeneracy in a Skyrmion magnet

114   0   0.0 ( 0 )
 Added by Dmitry Kovrizhin L
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We identify a large family of ground states of a topological Skyrmion magnet whose classical degeneracy persists to all orders in a semiclassical expansion. This goes along with an exceptional robustness of the concomitant ground state configurations, which are not at all dressed by quantum fluctuations. We trace these twin observations back to a common root: this class of topological ground states saturates a Bogomolny inequality. A similar phenomenology occurs in high-energy physics for some field theories exhibiting supersymmetry. We propose quantum Hall ferromagnets, where these Skyrmions configurations arise naturally as ground states away from integer filling, as the best available laboratory realisations.



rate research

Read More

Skyrmions represent topologically stable field configurations with particle-like properties. We used neutron scattering to observe the spontaneous formation of a two-dimensional lattice of skyrmion lines, a type of magnetic vortices, in the chiral itinerant-electron magnet MnSi. The skyrmion lattice stabilizes at the border between paramagnetism and long-range helimagnetic order perpendicular to a small applied magnetic field regardless of the direction of the magnetic field relative to the atomic lattice. Our study experimentally establishes magnetic materials lacking inversion symmetry as an arena for new forms of crystalline order composed of topologically stable spin states.
We describe the phase diagram of electrons on a fully connected lattice with random hopping, subject to a random Heisenberg spin exchange interactions between any pair of sites and a constraint of no double occupancy. A perturbative renormalization group analysis yields a critical point with fractionalized excitations at a non-zero critical value $p_c$ of the hole doping $p$ away from the half-filled insulator. We compute the renormalization group to two loops, but some exponents are obtained to all loop order. We argue that the critical point $p_c$ is flanked by confining phases: a disordered Fermi liquid with carrier density $1+p$ for $p>p_c$, and a metallic spin glass with carrier density $p$ for $p<p_c$. Additional evidence for the critical behavior is obtained from a large $M$ analysis of a model which extends the SU(2) spin symmetry to SU($M$). We discuss the relationship of the vicinity of this deconfined quantum critical point to key aspects of cuprate phenomenology.
84 - Han Zhang , Qing Huang , Lin Hao 2020
We performed a systematic study of the temperature- and field-dependence of magnetization and resistivity of Gd2PdSi3, which is a centrosymmetric skyrmion crystal. While the magnetization behavior is consistent with the reported phase diagram based on susceptibility, we show that a phase diagram can also be constructed based on the anomalous magnetoresistance with one-to-one correspondence among all the features. In addition, the crossover boundary into the field-induced ferromagnetic state is also identified. Our results suggest that the ferromagnetic spin fluctuations above the Neel temperature play a key role in the high sensitivity of the resistivity anomalies to magnetic field, pointing to the rich interplay of different magnetic correlations at zero and finite wave vectors underlying the skyrmion lattice in this frustrated itinerant magnet.
Magnetic skyrmions are vortex-like topological spin textures often observed to form a triangular-lattice skyrmion crystal in structurally chiral magnets with Dzyaloshinskii-Moriya interaction. Recently $beta$-Mn structure-type Co-Zn-Mn alloys were identified as a new class of chiral magnet to host such skyrmion crystal phases, while $beta$-Mn itself is known as hosting an elemental geometrically frustrated spin liquid. Here we report the intermediate composition system Co$_7$Zn$_7$Mn$_6$ to be a unique host of two disconnected, thermal-equilibrium topological skyrmion phases; one is a conventional skyrmion crystal phase stabilized by thermal fluctuations and restricted to exist just below the magnetic transition temperature $T_mathrm{c}$, and the other is a novel three-dimensionally disordered skyrmion phase that is stable well below $T_mathrm{c}$. The stability of this new disordered skyrmion phase is due to a cooperative interplay between the chiral magnetism with Dzyaloshinskii-Moriya interaction and the frustrated magnetism inherent to $beta$-Mn.
We study the evolution of the magnetic phase diagram of Mn$_{1-x}$Fe$_{x}$Ge alloys with concentration $x$ ($0 leq x leq 0.3$) by small-angle neutron scattering. We unambiguously observe the absence of a skyrmion lattice (or A-phase) in bulk MnGe and its onset under a small Mn/Fe substitution. The A-phase is there endowed with an exceptional skyrmion density, and is stabilized within a very large temperature region and a field range which scales with the Fe concentration. Our findings highlight the possibility to fine-tune properties of skyrmion lattices by means of chemical doping.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا