Do you want to publish a course? Click here

Skyrmion Lattice in a Chiral Magnet

144   0   0.0 ( 0 )
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Skyrmions represent topologically stable field configurations with particle-like properties. We used neutron scattering to observe the spontaneous formation of a two-dimensional lattice of skyrmion lines, a type of magnetic vortices, in the chiral itinerant-electron magnet MnSi. The skyrmion lattice stabilizes at the border between paramagnetism and long-range helimagnetic order perpendicular to a small applied magnetic field regardless of the direction of the magnetic field relative to the atomic lattice. Our study experimentally establishes magnetic materials lacking inversion symmetry as an arena for new forms of crystalline order composed of topologically stable spin states.



rate research

Read More

We develop a theory of the magnetic field-induced formation of Skyrmion crystal state in chiral magnets in two spatial dimensions, motivated by the recent discovery of the Skyrmionic phase of magnetization in thin film of Fe$_{0.5}$Co$_{0.5}$Si and in the A-phase of MnSi. Ginzburg-Landau functional of the chiral magnet re-written in the CP$^1$ representation is shown to be a convenient framework for the analysis of the Skyrmion states. Phase diagram of the model at zero temperature gives a sequence of ground states, helical spin $rightarrow$ Skyrme crystal $rightarrow$ ferromagnet, as the external field $B$ increases, in good accord with the thin-film experiment. In close analogy with Abrikosovs derivation of the vortex lattice solution in type-II superconductor, the CP$^1$ mean-field equation is solved and shown to reproduce the Skyrmion crystal state.
We report experimental coupling of chiral magnetism and superconductivity in [IrFeCoPt]/Nb heterostructures. The stray field of skyrmions with radius ~50nm is sufficient to nucleate antivortices in a 25nm Nb film, with unique signatures in the magnetization, critical current and flux dynamics, corroborated via simulations. We also detect a thermally-tunable Rashba-Edelstein exchange coupling in the isolated skyrmion phase. This realization of a strongly interacting skyrmion-(anti)vortex system opens a path towards controllable topological hybrid materials, unattainable to date.
71 - Lipeng Jin , Bin Xi , Jia-Wei Mei 2021
Magnetic skyrmions are stable topological spin textures with significant potential for spintronics applications. Merons, as half-skyrmions, have been discovered by recent observations, which have also raised the upsurge of research. The main purpose of this work is to study further the lattice forms of merons and skyrmions. We study a classical spin model with Dzyaloshinskii-Moriya interaction, easy-axis, and in-plane magnetic anisotropies on the honeycomb lattice via Monte Carlo simulations. This model could also describe the low-energy behaviors of a two-component bosonic model with a synthetic spin-orbit coupling in the deep Mott insulating region or two-dimensional materials with strong spin-orbit coupling. The results demonstrate the emergence of different sizes of spiral phases, skyrmion and vortex superlattice in absence of magnetic field, furthered the emergence of field-induced meron and skyrmion superlattice. In particular, we give the simulated evolution of the spin textures driven by the magnetic field, which could further reveal the effect of the magnetic field for inducing meron and skyrmion superlattice.
173 - T. Schulz , R. Ritz , A. Bauer 2012
When an electron moves in a smoothly varying non-collinear magnetic structure, its spin-orientation adapts constantly, thereby inducing forces that act on both the magnetic structure and the electron. These forces may be described by electric and magnetic fields of an emergent electrodynamics. The topologically quantized winding number of so-called skyrmions, i.e., certain magnetic whirls, discovered recently in chiral magnets are theoretically predicted to induce exactly one quantum of emergent magnetic flux per skyrmion. A moving skyrmion is therefore expected to induce an emergent electric field following Faradays law of induction, which inherits this topological quantization. Here we report Hall effect measurements, which establish quantitatively the predicted emergent electrodynamics. This allows to obtain quantitative evidence of the depinning of skyrmions from impurities at ultra-low current densities of only 10^6 A/m^2 and their subsequent motion. The combination of exceptionally small current densities and simple transport measurements offers fundamental insights into the connection between emergent and real electrodynamics of skyrmions in chiral magnets, and promises to be important for applications in the long-term.
A toroidal dipole moment appears independent of the electric and magnetic dipole moment in the multipole expansion of electrodynamics. It arises naturally from vortex-like arrangements of spins. Observing and controlling spontaneous long-range orders of toroidal moments are highly promising for spintronics but remain challenging. Here we demonstrate that a vortex-like spin configuration with a staggered arrangement of toroidal moments, a ferritoroidal state, is realized in a chiral triangular-lattice magnet BaCoSiO4. Upon applying a magnetic field, we observe multi-stair toroidal transitions correlating directly with metamagnetic transitions. We establish a first-principles microscopic Hamiltonian that explains both the formation of toroidal states and the metamagnetic toroidal transition as a combined effect of the magnetic frustration and the Dzyaloshinskii-Moriya interactions allowed by the crystallographic chirality in BaCoSiO4.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا