Do you want to publish a course? Click here

Computation of Dilated Kronecker Coefficients

77   0   0.0 ( 0 )
 Added by M. Welleda Baldoni
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

The computation of Kronecker coefficients is a challenging problem with a variety of applications. In this paper we present an approach based on methods from symplectic geometry and residue calculus. We outline a general algorithm for the problem and then illustrate its effectiveness in several interesting examples. Significantly, our algorithm does not only compute individual Kronecker coefficients, but also symbolic formulas that are valid on an entire polyhedral chamber. As a byproduct, we are able to compute several Hilbert series.



rate research

Read More

These notes are an expanded version of a talk given by the second author. Our main interest is focused on the challenging problem of computing Kronecker coefficients. We decided, at the beginning, to take a very general approach to the problem of studying multiplicity functions, and we survey the various aspects of the theory that comes into play, giving a detailed bibliography to orient the reader. Nonetheless the main general theorems involving multiplicities functions (convexity, quasi-polynomial behavior, Jeffrey-Kirwan residues) are stated without proofs. Then, we present in detail our approach to the computational problem, giving explicit formulae, and outlining an algorithm that calculate many interesting examples, some of which appear in the literature also in connection with Hilbert series.
105 - Maxime Pelletier 2016
We give another proof, using tools from Geometric Invariant Theory, of a result due to S. Sam and A. Snowden in 2014, concerning the stability of Kro-necker coefficients. This result states that some sequences of Kronecker coefficients eventually stabilise, and our method gives a nice geometric bound from which the stabilisation occurs. We perform the explicit computation of such a bound on two examples, one being the classical case of Murnaghans stability. Moreover, we see that our techniques apply to other coefficients arising in Representation Theory: namely to some plethysm coefficients and in the case of the tensor product of representations of the hyperoctahedral group.
We define solvable quantum mechanical systems on a Hilbert space spanned by bipartite ribbon graphs with a fixed number of edges. The Hilbert space is also an associative algebra, where the product is derived from permutation group products. The existence and structure of this Hilbert space algebra has a number of consequences. The algebra product, which can be expressed in terms of integer ribbon graph reconnection coefficients, is used to define solvable Hamiltonians with eigenvalues expressed in terms of normalized characters of symmetric group elements and degeneracies given in terms of Kronecker coefficients, which are tensor product multiplicities of symmetric group representations. The square of the Kronecker coefficient for a triple of Young diagrams is shown to be equal to the dimension of a sub-lattice in the lattice of ribbon graphs. This leads to an answer to the long-standing question of a combinatoric interpretation of the Kronecker coefficients. As an avenue to explore quantum supremacy and its implications for computational complexity theory, we outline experiments to detect non-vanishing Kronecker coefficients for hypothetical quantum realizations/simulations of these quantum systems. The correspondence between ribbon graphs and Belyi maps leads to an interpretation of these quantum mechanical systems in terms of quantum membrane world-volumes interpolating between string geometries.
In this paper we explicitly compute all Littlewood-Richardson coefficients for semisimple or Kac-Moody groups G, that is, the structure coefficients of the cohomology algebra H^*(G/P), where P is a parabolic subgroup of G. These coefficients are of importance in enumerative geometry, algebraic combinatorics and representation theory. Our formula for the Littlewood-Richardson coefficients is given in terms of the Cartan matrix and the Weyl group of G. However, if some off-diagonal entries of the Cartan matrix are 0 or -1, the formula may contain negative summands. On the other hand, if the Cartan matrix satisfies $a_{ij}a_{ji}ge 4$ for all $i,j$, then each summand in our formula is nonnegative that implies nonnegativity of all Littlewood-Richardson coefficients. We extend this and other results to the structure coefficients of the T-equivariant cohomology of flag varieties G/P and Bott-Samelson varieties Gamma_ii(G).
96 - Pan Chen 2018
In this paper we show that the leading coefficients $mu(y,w)$ of some Kazhdan-Lusztig polynomials $P_{y,w}$ with $y,w$ in the affine Weyl group of type $widetilde{B_n}$ can be $n$; in the cases of types $widetilde{C_n}$ and $widetilde{D_n}$ they can be $n+1.$ Consequently, for the corresponding simply connected simple algebraic groups, the dimensions of the first extension groups between certain irreducible modules will go to infinity when $n$ increases.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا