Do you want to publish a course? Click here

Determining Tournament Payout Structures for Daily Fantasy Sports

62   0   0.0 ( 0 )
 Added by Christopher Musco
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

With an exploding global market and the recent introduction of online cash prize tournaments, fantasy sports contests are quickly becoming a central part of the social gaming and sports industries. For sports fans and online media companies, fantasy sports contests are an opportunity for large financial gains. However, they present a host of technical challenges that arise from the complexities involved in running a web-scale, prize driven fantasy sports platform. We initiate the study of these challenges by examining one concrete problem in particular: how to algorithmically generate contest payout structures that are 1) economically motivating and appealing to contestants and 2) reasonably structured and succinctly representable. We formalize this problem and present a general two-staged approach for producing satisfying payout structures given constraints on contest size, entry fee, prize bucketing, etc. We then propose and evaluate several potential algorithms for solving the payout problem efficiently, including methods based on dynamic programming, integer programming, and heuristic techniques. Experimental results show that a carefully designed heuristic scales very well, even to contests with over 100,000 prize winners. Our approach extends beyond fantasy sports -- it is suitable for generating engaging payout structures for any contest with a large number of entrants and a large number of prize winners, including other massive online games, poker tournaments, and real-life sports tournaments.



rate research

Read More

We consider the problem of selecting a portfolio of entries of fixed cardinality for contests with top-heavy payoff structures, i.e. most of the winnings go to the top-ranked entries. This framework is general and can be used to model a variety of problems, such as movie studios selecting movies to produce, venture capital firms picking start-up companies to invest in, or individuals selecting lineups for daily fantasy sports contests, which is the example we focus on here. We model the portfolio selection task as a combinatorial optimization problem with a submodular objective function, which is given by the probability of at least one entry winning. We then show that this probability can be approximated using only pairwise marginal probabilities of the entries winning when there is a certain structure on their joint distribution. We consider a model where the entries are jointly Gaussian random variables and present a closed form approximation to the objective function. Building on this, we then consider a scenario where the entries are given by sums of constrained resources and present an integer programming formulation to construct the entries. Our formulation uses principles based on our theoretical analysis to construct entries: we maximize the expected score of an entry subject to a lower bound on its variance and an upper bound on its correlation with previously constructed entries. To demonstrate the effectiveness of our integer programming approach, we apply it to daily fantasy sports contests that have top-heavy payoff structures. We find that our approach performs well in practice. Using our integer programming approach, we are able to rank in the top-ten multiple times in hockey and baseball contests with thousands of competing entries. Our approach can easily be extended to other problems with constrained resources and a top-heavy payoff structure.
We prove a separation between offline and online algorithms for finger-based tournament heaps undergoing key modifications. These heaps are implemented by binary trees with keys stored on leaves, and intermediate nodes tracking the min of their respective subtrees. They represent a natural starting point for studying self-adjusting heaps due to the need to access the root-to-leaf path upon modifications. We combine previous studies on the competitive ratios of unordered binary search trees by [Fredman WADS2011] and on order-by-next request by [Martinez-Roura TCS2000] and [Munro ESA2000] to show that for any number of fingers, tournament heaps cannot handle a sequence of modify-key operations with competitive ratio in $o(sqrt{log{n}})$. Critical to this analysis is the characterization of the modifications that a heap can undergo upon an access. There are $exp(Theta(n log{n}))$ valid heaps on $n$ keys, but only $exp(Theta(n))$ binary search trees. We parameterize the modification power through the well-studied concept of fingers: additional pointers the data structure can manipulate arbitrarily. Here we demonstrate that fingers can be significantly more powerful than servers moving on a static tree by showing that access to $k$ fingers allow an offline algorithm to handle any access sequence with amortized cost $O(log_{k}(n) + 2^{lg^{*}n})$.
In this paper, we tackle the problem of measuring similarity among graphs that represent real objects with noisy data. To account for noise, we relax the definition of similarity using the maximum weighted co-$k$-plex relaxation method, which allows dissimilarities among graphs up to a predetermined level. We then formulate the problem as a novel quadratic unconstrained binary optimization problem that can be solved by a quantum annealer. The context of our study is molecular similarity where the presence of noise might be due to regular errors in measuring molecular features. We develop a similarity measure and use it to predict the mutagenicity of a molecule. Our results indicate that the relaxed similarity measure, designed to accommodate the regular errors, yields a higher prediction accuracy than the measure that ignores the noise.
Systems for automatic argument generation and debate require the ability to (1) determine the stance of any claims employed in the argument and (2) assess the specificity of each claim relative to the argument context. Existing work on understanding claim specificity and stance, however, has been limited to the study of argumentative structures that are relatively shallow, most often consisting of a single claim that directly supports or opposes the argument thesis. In this paper, we tackle these tasks in the context of complex arguments on a diverse set of topics. In particular, our dataset consists of manually curated argument trees for 741 controversial topics covering 95,312 unique claims; lines of argument are generally of depth 2 to 6. We find that as the distance between a pair of claims increases along the argument path, determining the relative specificity of a pair of claims becomes easier and determining their relative stance becomes harder.
141 - Mathias Soeken 2020
We present a constructive SAT-based algorithm to determine the multiplicative complexity of a Boolean function, i.e., the smallest number of AND gates in any logic network that consists of 2-input AND gates, 2-input XOR gates, and inverters. In order to speed-up solving time, we make use of several symmetry breaking constraints; these exploit properties of XAGs that may be useful beyond the proposed SAT-based algorithm. We further propose a heuristic post-optimization algorithm to reduce the number of XOR gates once the optimum number of AND gates has been obtained, which also makes use of SAT solvers. Our algorithm is capable to find all optimum XAGs for representatives of all 5-input affine-equivalent classes, and for a set of frequently occurring 6-input functions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا