No Arabic abstract
The results of a study of the beta decays of three proton-rich nuclei with $T_z=text{-}2$, namely $^{48}$Fe, $^{52}$Ni and $^{56}$Zn, produced in an experiment carried out at GANIL, are reported. In all three cases we have extracted the half-lives and the total $beta$-delayed proton emission branching ratios. We have measured the individual $beta$-delayed protons and $beta$-delayed $gamma$ rays and the branching ratios of the corresponding levels. Decay schemes have been determined for the three nuclei, and new energy levels are identified in the daughter nuclei. Competition between $beta$-delayed protons and $gamma$ rays is observed in the de-excitation of the $T=2$ Isobaric Analogue States in all three cases. Absolute Fermi and Gamow-Teller transition strengths have been determined. The mass excesses of the nuclei under study have been deduced. In addition, we discuss in detail the data analysis taking as a test case $^{56}$Zn, where the exotic $beta$-delayed $gamma$-proton decay has been observed.
A very exotic decay mode at the proton drip-line, $beta$-delayed $gamma$-proton decay, has been observed in the $beta$ decay of the $T_z$ = -2 nucleus $^{56}$Zn. Three $gamma$-proton sequences have been observed following the $beta$ decay. The fragmentation of the IAS in $^{56}$Cu has also been observed for the first time. The results were reported in a recent publication. At the time of publication the authors were puzzled by the competition between proton and $gamma$ decays from the main component of the IAS. Here we outline a possible explanation based on the nuclear structure properties of the three nuclei involved, namely $^{56}$Zn, $^{56}$Cu and $^{55}$Ni, close to the doubly magic nucleus $^{56}$Ni. From the fragmentation of the Fermi strength and the excitation energy of the two populated 0$^{+}$ states we could deduce the off-diagonal matrix element of the charge-dependent part of the Hamiltonian responsible for the mixing. These results are compared with the decay of $^{55}$Cu with one proton less than $^{56}$Zn. For completeness we summarise the results already published.
Remarkable results have been published recently on the $beta$ decay of $^{56}$Zn. In particular, the rare and exotic $beta$-delayed $gamma$-proton emission has been detected for the first time in the $fp$ shell. Here we focus the discussion on this exotic decay mode and on the observed competition between $beta$-delayed protons and $beta$-delayed $gamma$ rays from the Isobaric Analogue State.
The half-lives of the Tz = -2, 56Zn and Tz = -1, 58Zn isotopes and other nuclei were measured in a {beta}-decay experiment at GANIL. The energy levels populated by the 56Zn {beta} decay were determined. The 56Zn results are compared with the results of the mirror process, the charge exchange reaction 56Fe(3He,t)56Co.
By using isochronous mass spectrometry (IMS) at the experimental cooler storage ring CSRe, masses of short-lived $^{44}$Cr, $^{46}$Mn, $^{48}$Fe, $^{50}$Co and $^{52}$Ni were measured for the first time and the precision of the mass of $^{40}$Ti was improved by a factor of about 2. Relative precisions of $delta m/m=(1-2)times$10$^{-6}$ have been achieved. Details of the measurements and data analysis are described. The obtained masses are compared with the Atomic-Mass Evaluation 2016 (AME$^{prime}$16) and with theoretical model predictions. The new mass data enable us to extract the higher order coefficients, $d$ and $e$, of the quartic form of the isobaric multiplet mass equation (IMME) for the $fp$-shell isospin quintets. Unexpectedly large $d$- and $e$-values for $A=44$ quintet are found. By re-visiting the previous experimental data on $beta$-delayed protons from $^{44}$Cr decay, it is suggested that the observed anomaly could be due to the misidentification of the $T=2$, $J^pi=0^{+}$ isobaric analog state (IAS) in $^{44}$V.
The $beta$ decay of the drip-line nucleus $^{20}$Mg gives important information on resonances in $^{20}$Na, which are relevant for the astrophysical $rp$-process. A detailed $beta$ decay spectroscopic study of $^{20}$Mg was performed by a continuous-implantation method. A detection system was specially developed for charged-particle decay studies, giving improved spectroscopic information including the half-life of $^{20}$Mg, the excitation energies, the branching ratios, and the log $ft$ values for the states in $^{20}$Na populated in the $beta$ decay of $^{20}$Mg. A new proton branch was observed and the corresponding excited state in $^{20}$Na was proposed. The large isospin asymmetry for the mirror decays of $^{20}$Mg and $^{20}$O was reproduced, as well. However, no conclusive conclusion can be draw about the astrophysically interesting 2645~keV resonance in $^{20}$Na due to the limited statistics.