No Arabic abstract
After the demonstration of the feasibility of hypernuclear spectroscopy with heavy-ion beams, the HypHI Collaboration will next focus on the study of proton- and neutron-rich hypernuclei. The use of a fragment separator for the production and separation of rare isotope beams is a crucial aspect to producing hypernuclei far from the stability line. Precise spectroscopy of exotic hypernuclei is planned to be carried out at the GSI and later at the FAIR facility with the FRS and Super-FRS fragment separators. A systematic study and an optimization analysis were performed in order to determine optimal experimental conditions for producing hypernuclei with high isospin. The optimal conditions are obtained based on theoretical models for the heavy-ion induced reaction and hypernuclei production. Experimental efficiencies for the production of exotic secondary beams were also taken into account via Monte Carlo simulations of the fragment separator. The developed methodology is presented to deduce the expected yields of $^8_Lambda$Be and subsequently other proton-rich and neutron-rich hypernuclei.
The reaction mechanisms best suited for the production of neutron-rich nuclei, fragmentation and fission, are discussed. Measurements of the production cross sections of reaction residues together with model calculations allow to conclude about the expected production rates of neutron-rich isotopes in future facilities.
We analyze hypernuclei coming from fragmentation and multifragmentation of spectator residues obtained in relativistic ion collisions. These hypernuclei have a broad distribution in masses and isospin. They reach beyond the neutron and proton drip lines, and they are expected to be stable with respect to neutron and proton emission. This gives us the opportunity to investigate the properties of exotic hypernuclei, as well as the properties of normal nuclei beyond the drip lines, which can be produced after weak decay of such hypernuclei.
Vector analyzing power for the proton-6He elastic scattering at 71 MeV/nucleon has been measured for the first time, with a newly developed polarized proton solid target working at low magnetic field of 0.09 T. The results are found to be incompatible with a t-matrix folding model prediction. Comparisons of the data with g-matrix folding analyses clearly show that the vector analyzing power is sensitive to the nuclear structure model used in the reaction analysis. The alpha-core distribution in 6He is suggested to be a possible key to understand the nuclear structure sensitivity.
Production cross sections for neutron-rich nuclei from the fragmentation of a 76Ge beam at 132 MeV/u were measured. The longitudinal momentum distributions of 34 neutron-rich isotopes of elements 13 <= Z <= 27 were scanned using a novel experimental approach of varying the target thickness. Production cross sections with beryllium and tungsten targets were determined for a large number of nuclei including 15 isotopes first observed in this work. These are the most neutron-rich nuclides of the elements 17 <= Z <= 25 (50Cl, 53Ar, 55,56K, 57,58Ca, 59,60,61Sc, 62,63Ti, 65,66V, 68Cr,70Mn). A one-body Qg systematics is used to describe the production cross sections based on thermal evaporation from excited prefragments. Some of the fragments near 58Ca show anomalously large production cross sections.
Production cross sections for neutron-rich nuclei from the fragmentation of a 82Se beam at 139 MeV/u were measured. The longitudinal momentum distributions of 122 neutron-rich isotopes of elements $11 le Z le 32$ were determined by varying the target thickness. Production cross sections with beryllium and tungsten targets were determined for a large number of nuclei including several isotopes first observed in this work. These are the most neutron-rich nuclides of the elements $22 le Z le 25$ (64Ti, 67V, 69Cr, 72Mn). One event was registered consistent with 70Cr, and another one with 75Fe. A one-body Qg systematics is used to describe the production cross sections based on thermal evaporation from excited prefragments. The current results confirm those of our previous experiment with a 76Ge beam: enhanced production cross sections for neutron-rich fragments near Z=20.