Do you want to publish a course? Click here

Chemical abundance gradients from open clusters in the Milky Way disk: results from the APOGEE survey

71   0   0.0 ( 0 )
 Added by Katia Cunha
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Metallicity gradients provide strong constraints for understanding the chemical evolution of the Galaxy. We report on radial abundance gradients of Fe, Ni, Ca, Si, and Mg obtained from a sample of 304 red-giant members of 29 disk open clusters, mostly concentrated at galactocentric distances between ~8 - 15 kpc, but including two open clusters in the outer disk. The observations are from the APOGEE survey. The chemical abundances were derived automatically by the ASPCAP pipeline and these are part of the SDSS III Data Release 12. The gradients, obtained from least squares fits to the data, are relatively flat, with slopes ranging from -0.026 to -0.033 dex/kpc for the alpha-elements [O/H], [Ca/H], [Si/H] and [Mg/H] and -0.035 dex/kpc and -0.040 dex/kpc for [Fe/H] and [Ni/H], respectively. Our results are not at odds with the possibility that metallicity ([Fe/H]) gradients are steeper in the inner disk (R_GC ~7 - 12 kpc) and flatter towards the outer disk. The open cluster sample studied spans a significant range in age. When breaking the sample into age bins, there is some indication that the younger open cluster population in our sample (log age < 8.7) has a flatter metallicity gradient when compared with the gradients obtained from older open clusters.



rate research

Read More

The SDSS-IV Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey has obtained high-resolution spectra for thousands of red giant stars distributed among the massive satellite galaxies of the Milky Way (MW): the Large and Small Magellanic Clouds (LMC/SMC), the Sagittarius Dwarf (Sgr), Fornax (Fnx), and the now fully disrupted emph{Gaia} Sausage/Enceladus (GSE) system. We present and analyze the APOGEE chemical abundance patterns of each galaxy to draw robust conclusions about their star formation histories, by quantifying the relative abundance trends of multiple elements (C, N, O, Mg, Al, Si, Ca, Fe, Ni, and Ce), as well as by fitting chemical evolution models to the [$alpha$/Fe]-[Fe/H] abundance plane for each galaxy. Results show that the chemical signatures of the starburst in the MCs observed by Nidever et al. in the $alpha$-element abundances extend to C+N, Al, and Ni, with the major burst in the SMC occurring some 3-4 Gyr before the burst in the LMC. We find that Sgr and Fnx also exhibit chemical abundance patterns suggestive of secondary star formation epochs, but these events were weaker and earlier ($sim$~5-7 Gyr ago) than those observed in the MCs. There is no chemical evidence of a second starburst in GSE, but this galaxy shows the strongest initial star formation as compared to the other four galaxies. All dwarf galaxies had greater relative contributions of AGB stars to their enrichment than the MW. Comparing and contrasting these chemical patterns highlight the importance of galaxy environment on its chemical evolution.
134 - C. Boeche , A. Siebert , T. Piffl 2013
Aim: We aim at measuring the chemical gradients of the elements Mg, Al, Si, and Fe along the Galactic radius to provide new constraints on the chemical evolution models of the Galaxy and Galaxy models such as the Besancon model. Methods: We analysed three different samples selected from three independent datasets: a sample of 19,962 dwarf stars selected from the RAVE database, a sample of 10,616 dwarf stars selected from the Geneva-Copenhagen Survey (GCS) dataset, and a mock sample (equivalent to the RAVE sample) created by using the GALAXIA code, which is based on the Besancon model. We measured the chemical gradients as functions of the guiding radius (Rg) at different distances from the Galactic plane reached by the stars along their orbit (Zmax). Results: The chemical gradients of the RAVE and GCS samples are negative and show consistent trends, although they are not equal: at Zmax<0.4 kpc and 4.5<Rg(kpc)<9.5, the iron gradient for the RAVE sample is d[Fe/H]/dRg=-0.065 dex kpc^{-1}, whereas for the GCS sample it is d[Fe/H]/dRg=-0.043 dex kpc^{-1} with internal errors +-0.002 and +-0.004 dex kpc^{-1}, respectively. The gradients of the RAVE and GCS samples become flatter at larger Zmax. Conversely, the mock sample has a positive iron gradient of d[Fe/H]/dRg=+0.053+-0.003 dex kpc^{-1} at Zmax<0.4 kpc and remains positive at any Zmax. These positive and unrealistic values originate from the lack of correlation between metallicity and tangential velocity in the Besancon model. The discrepancies between the observational samples and the mock sample can be reduced by i) decreasing the density, ii) decreasing the vertical velocity, and iii) increasing the metallicity of the thick disc in the Besancon model.
131 - C. Boeche , A. Siebert , T. Piffl 2014
We provide new constraints on the chemo-dynamical models of the Milky Way by measuring the radial and vertical chemical gradients for the elements Mg, Al, Si, Ti, and Fe in the Galactic disc and the gradient variations as a function of the distance from the Galactic plane ($Z$). We selected a sample of giant stars from the RAVE database using the gravity criterium 1.7$<$log g$<$2.8. We created a RAVE mock sample with the Galaxia code based on the Besanc con model and selected a corresponding mock sample to compare the model with the observed data. We measured the radial gradients and the vertical gradients as a function of the distance from the Galactic plane $Z$ to study their variation across the Galactic disc. The RAVE sample exhibits a negative radial gradient of $d[Fe/H]/dR=-0.054$ dex kpc$^{-1}$ close to the Galactic plane ($|Z|<0.4$ kpc) that becomes flatter for larger $|Z|$. Other elements follow the same trend although with some variations from element to element. The mock sample has radial gradients in fair agreement with the observed data. The variation of the gradients with $Z$ shows that the Fe radial gradient of the RAVE sample has little change in the range $|Z|lesssim0.6$ kpc and then flattens. The iron vertical gradient of the RAVE sample is slightly negative close to the Galactic plane and steepens with $|Z|$. The mock sample exhibits an iron vertical gradient that is always steeper than the RAVE sample. The mock sample also shows an excess of metal-poor stars in the [Fe/H] distributions with respect to the observed data. These discrepancies can be reduced by decreasing the number of thick disc stars and increasing their average metallicity in the Besanc con model.
Using a sample of 69,919 red giants from the SDSS-III/APOGEE Data Release 12, we measure the distribution of stars in the [$alpha$/Fe] vs. [Fe/H] plane and the metallicity distribution functions (MDF) across an unprecedented volume of the Milky Way disk, with radius $3<R<15$ kpc and height $|z|<2$ kpc. Stars in the inner disk ($R<5$ kpc) lie along a single track in [$alpha$/Fe] vs. [Fe/H], starting with $alpha$-enhanced, metal-poor stars and ending at [$alpha$/Fe]$sim0$ and [Fe/H]$sim+0.4$. At larger radii we find two distinct sequences in [$alpha$/Fe] vs. [Fe/H] space, with a roughly solar-$alpha$ sequence that spans a decade in metallicity and a high-$alpha$ sequence that merges with the low-$alpha$ sequence at super-solar [Fe/H]. The location of the high-$alpha$ sequence is nearly constant across the disk, however there are very few high-$alpha$ stars at $R>11$ kpc. The peak of the midplane MDF shifts to lower metallicity at larger $R$, reflecting the Galactic metallicity gradient. Most strikingly, the shape of the midplane MDF changes systematically with radius, with a negatively skewed distribution at $3<R<7$ kpc, to a roughly Gaussian distribution at the solar annulus, to a positively skewed shape in the outer Galaxy. For stars with $|z|>1$ kpc or [$alpha$/Fe]$>0.18$, the MDF shows little dependence on $R$. The positive skewness of the outer disk MDF may be a signature of radial migration; we show that blurring of stellar populations by orbital eccentricities is not enough to explain the reversal of MDF shape but a simple model of radial migration can do so.
We have collected high-dispersion echelle spectra of red giant members in the twelve open clusters (OCs) and derived stellar parameters and chemical abundances for 26 species by either line equivalent widths or synthetic spectrum analyses. We confirm the lack of an age-metallicity relation for OCs but argue that such a lack of trend for OCs arise from the limited coverage in metallicity compared to that of field stars which span a wide range in metallicity and age. We confirm that the radial metallicity gradient of OCs is steeper (flatter) for Rgc < 12 kpc (> 12 kpc). We demonstrate that the sample of clusters constituting a steep radial metallicity gradient of slope $-$0.052$pm$0.011 dex kpc$^{-1}$ at Rgc < 12 kpc are younger than 1.5 Gyr and located close to the Galactic midplane (|z| < 0.5 kpc) with kinematics typical of the thin disc. Whereas the clusters describing a shallow slope of $-$0.015$pm$0.007 dex kpc$^{-1}$ at Rgc > 12 kpc are relatively old, thick disc members with a striking spread in age and height above the midplane (0.5 < |z| < 2.5 kpc). Our investigation reveals that the OCs and field stars yield consistent radial metallicity gradients if the comparison is limited to samples drawn from the similar vertical heights. We argue via the computation of Galactic orbits that all the outer disc clusters were actually born inward of 12 kpc but the orbital eccentricity has taken them to present locations very far from their birthplaces.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا