No Arabic abstract
Interacting galaxies are known to have higher global rates of star formation on average than normal galaxies, relative to their stellar masses. Using UV and IR photometry combined with new and published H-alpha images, we have compared the star formation rates of ~700 star forming complexes in 46 nearby interacting galaxy pairs with those of regions in 39 normal spiral galaxies. The interacting galaxies have proportionally more regions with high star formation rates than the spirals. The most extreme regions in the interacting systems lie at the intersections of spiral/tidal structures, where gas is expected to pile up and trigger star formation. Published Hubble Telescope images show unusually large and luminous star clusters in the highest luminosity regions. The star formation rates of the clumps correlate with measures of the dust attenuation, consistent with the idea that regions with more interstellar gas have more star formation. For the clumps with the highest star formation rates, the apparent dust attenuation is consistent with the Calzetti starburst dust attenuation law. This suggests that the high luminosity regions are dominated by a central group of young stars surrounded by a shell of clumpy interstellar gas. In contrast, the lower luminosity clumps are bright in the UV relative to H-alpha, suggesting either a high differential attenuation between the ionized gas and the stars, or a post-starburst population bright in the UV but faded in H-alpha. The fraction of the global light of the galaxies in the clumps is higher on average for the interacting galaxies than for the spirals. Thus the star forming regions in interacting galaxies are more luminous, dustier, or younger on average.
We investigate the impact of spiral structure on global star formation using a sample of 2226 nearby bright disk galaxies. Examining the relationship between spiral arms, star formation rate (SFR), and stellar mass, we find that arm strength correlates well with the variation of SFR as a function of stellar mass. Arms are stronger above the star-forming galaxy main sequence (MS) and weaker below it: arm strength increases with higher $log,({rm SFR}/{rm SFR}_{rm MS})$, where ${rm SFR}_{rm MS}$ is the SFR along the MS. Likewise, stronger arms are associated with higher specific SFR. We confirm this trend using the optical colors of a larger sample of 4378 disk galaxies, whose position on the blue cloud also depends systematically on spiral arm strength. This link is independent of other galaxy structural parameters. For the subset of galaxies with cold gas measurements, arm strength positively correlates with HI and H$_2$ mass fraction, even after removing the mutual dependence on $log,({rm SFR}/{rm SFR}_{rm MS})$, consistent with the notion that spiral arms are maintained by dynamical cooling provided by gas damping. For a given gas fraction, stronger arms lead to higher $log,({rm SFR}/{rm SFR}_{rm MS})$, resulting in a trend of increasing arm strength with shorter gas depletion time. We suggest a physical picture in which the dissipation process provided by gas damping maintains spiral structure, which, in turn, boosts the star formation efficiency of the gas reservoir.
We have observed 10 interacting galaxy pairs using the Fabry-Perot interferometer GH$alpha$FaS (Galaxy H$alpha$ Fabry-Perot system) on the $4.2rm{m}$ William Herschel Telescope (WHT) at the Observatorio del Roque de los Muchachos, La Palma. We present here the H$alpha$ surface brightness, velocity and velocity dispersion maps for the 10 systems we have not previously observed using this technique, as well as the physical properties (sizes, H$alpha$ luminosities and velocity dispersion) of 1259 HII regions from the full sample. We also derive the physical properties of 1054 HII regions in a sample of 28 isolated galaxies observed with the same instrument in order to compare the two populations of HII regions. We find a population of the brightest HII regions for which the scaling relations, for example the relation between the H$alpha$ luminosity and the radius, are clearly distinct from the relations for the regions of lower luminosity. The regions in this bright population are more frequent in the interacting galaxies. We find that the turbulence, and also the star formation rate, are enhanced in the HII regions in the interacting galaxies. We have also extracted the H$alpha$ equivalent widths for the HII regions of both samples, and we have found that the distribution of HII region ages coincides for the two samples of galaxies. We suggest that the SFR enhancement is brought about by gas flows induced by the interactions, which give rise to gravitationally bound gas clouds which grow further by accretion from the flowing gas, producing conditions favourable to star formation.
We have fit the far-ultraviolet (FUV) to mid-infrared (MIR) spectral energy distributions (SEDs) for several nearby galaxies ($<$ 20 Mpc). Global, radial, and local photometric measurements are explored to better understand how SED-derived star formation histories (SFHs) and classic star formation rate (SFR) tracers manifest at different scales. Surface brightness profiles and radial SED fitting provide insight into stellar population gradients in stellar discs and haloes. A double exponential SFH model is used in the SED fitting to better understand the distributions of young vs. old populations throughout these galaxies. Different regions of a galaxy often have undergone very different SFHs, either in strength, rate, timing, or some combination of all these factors. An analysis of individual stellar complexes within these galaxies shows a relationship between the ages of stellar clusters and how these clusters are distributed throughout the galaxy. These star formation properties are presented alongside previously published HI observations to provide a holistic picture of a small sample of nearby star-forming galaxies. The results presented here show that there is a wide variety of star formation gradients and average stellar age distributions that can manifest in a $Lambda$CDM universe.
We present a comparative study of a set of star-formation rate tracers based on mid-infrared emission in the 12.81$mu$m [Ne II] line, the 15.56$mu$m [Ne III] line, and emission features from polycyclic aromatic hydrocarbons (PAHs) between 5.2 and 14.7$mu$m. We calibrate our tracers with the thermal component of the radio continuum emission at 33 GHz from 33 extranuclear star-forming regions observed in nearby galaxies. Correlations between mid-IR emission features and thermal 33 GHz star-formation rates (SFR) show significant metallicity-dependent scatter and offsets. We find similar metallicity-dependent trends in commonly used SFR tracers such as H$alpha$ and 24$mu$m. As seen in previous studies, PAH emission alone is a poor SFR tracer due to a strong metallicity dependence: lower metallicity regions show decreased PAH emission relative to their SFR compared to higher metallicity regions. We construct combinations of PAH bands, neon emission lines, and their respective ratios to minimize metallicity trends. The calibrations that most accurately trace SFR with minimal metallicity dependence involve the sum of the integrated intensities of the 12.81$mu$m [Ne II] line and the 15.56$mu$m [Ne III] line combined with any major PAH feature normalized by dust continuum emission. This mid-IR calibration is a useful tool for measuring SFR as it is minimally sensitive to variations in metallicity and it is composed of bright, ubiquitous emission features. The Mid-Infrared Instrument (MIRI) on the James Webb Space Telescope will detect these features from galaxies as far as redshift z$sim$1. We also investigate the behavior of the PAH band ratios and find that subtracting the local background surrounding a star-forming region decreases the ratio of PAH 11.3$mu$m to 7.7$mu$m emission. This implies PAHs are more ionized in star-forming regions relative to their surroundings.
We use optical integral-field spectroscopic (IFS) data from 103 nearby galaxies at different stages of the merging event, from close pairs to merger remnants provided by the CALIFA survey, to study the impact of the interaction in the specific star formation and oxygen abundance on different galactic scales. To disentangle the effect of the interaction and merger from internal processes, we compared our results with a control sample of 80 non-interacting galaxies. We confirm the moderate enhancement (2-3 times) of specific star formation for interacting galaxies in central regions as reported by previous studies; however, the specific star formation is comparable when observed in extended regions. We find that control and interacting star-forming galaxies have similar oxygen abundances in their central regions, when normalized to their stellar masses. Oxygen abundances of these interacting galaxies seem to decrease compared to the control objects at the large aperture sizes measured in effective radius. Although the enhancement in central star formation and lower metallicities for interacting galaxies have been attributed to tidally induced inflows, our results suggest that other processes such as stellar feedback can contribute to the metal enrichment in interacting galaxies.