Do you want to publish a course? Click here

Green 5G Heterogeneous Networks through Dynamic Small-Cell Operation

80   0   0.0 ( 0 )
 Added by Yueling Che
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

Traditional macro-cell networks are experiencing an upsurge of data traffic, and small-cells are deployed to help offload the traffic from macro-cells. Given the massive deployment of small-cells in a macro-cell, the aggregate power consumption of small-cells (though being low individually) can be larger than that of the macro-cell. Compared to the macro-cell base station (MBS) whose power consumption increases significantly with its traffic load, the power consumption of a small-cell base station (SBS) is relatively flat and independent of its load. To reduce the total power consumption of the heterogeneous networks (HetNets), we dynamically change the operating states (on and off) of the SBSs, while keeping the MBS on to avoid any service failure outside active small-cells. First, we consider that the wireless users are uniformly distributed in the network, and propose an optimal location-based operation scheme by gradually turning off the SBSs closer to the MBS. We then extend the operation problem to a more general case where users are non-uniformly distributed in the network. Although this problem is NP-hard, we propose a joint location and user density based operation scheme to achieve near-optimum (with less than 1% performance loss in our simulations) in polynomial time.



rate research

Read More

We study the problem of interference management in large-scale small cell networks, where each user equipment (UE) needs to determine in a distributed manner when and at what power level it should transmit to its serving small cell base station (SBS) such that a given network performance criterion is maximized subject to minimum quality of service (QoS) requirements by the UEs. We first propose a distributed algorithm for the UE-SBS pairs to find a subset of weakly interfering UE-SBS pairs, namely the maximal independent sets (MISs) of the interference graph in logarithmic time (with respect to the number of UEs). Then we propose a novel problem formulation which enables UE-SBS pairs to determine the optimal fractions of time occupied by each MIS in a distributed manner. We analytically bound the performance of our distributed policy in terms of the competitive ratio with respect to the optimal network performance, which is obtained in a centralized manner with NP (non-deterministic polynomial time) complexity. Remarkably, the competitive ratio is independent of the network size, which guarantees scalability in terms of performance for arbitrarily large networks. Through simulations, we show that our proposed policies achieve significant performance improvements (from 150% to 700%) over the existing policies.
This paper addresses the energy-saving problem for the downlink of heterogeneous networks, which aims at minimizing the total base stations (BSs) power consumption while each users rate requirement is supported. The basic idea of this work is to make use of the flexibility and scalability of the system such that more benefits can be gained by efficient resource management. This motivates us to propose a flexible BS power consumption model, which can control system resources, such as antennas, frequency carriers and transmit power allocation in an energy efficient manner rather than the on/off binary sleep mode for BSs. To denote these power-saving modes, we employ the group sparsity of the transmit power vector instead of the {0, 1} variables. Based on this power model, a semi-dynamic green resource management mechanism is proposed, which can jointly solve a series of resource management problems, including BS association, frequency carriers (FCs) assignment, and the transmit power allocation, by group sparse power control based on the large scale fading values. In particular, the successive convex approximation (SCA)-based algorithm is applied to solve a stationary solution to the original non-convex problem. Simulation results also verify the proposed BS power model and the green resource management mechanism.
Mobile users (or UEs, to use 3GPP terminology) served by small cells in dense urban settings may abruptly experience a significant deterioration in their channel to their serving base stations (BSs) in several scenarios, such as after turning a corner around a tall building, or a sudden knot of traffic blocking the direct path between the UE and its serving BS. In this work, we propose a scheme to temporarily increase the data rate to/from this UE with additional bandwidth from the nearest Coordinated Multi-Point (CoMP) cluster of BSs, while the slower process of handover of the UE to a new serving BS is ongoing. We emphasize that this additional bandwidth is additional to the data rates the UE is getting over its primary connection to the current serving BS and, after the handover, to the new serving BS. The key novelty of the present work is the proposal of a decentralized market-based resource allocation method to perform resource allocation to support Coordinated Beamforming (CB) CoMP. It is scalable to large numbers of UEs and BSs, and it is fast because resource allocations are made bilaterally, between BSs and UEs. Once the resource allocation to the UE has been made, the coordinated of transmissions occurs as per the usual CB methods. Thus the proposed method has the benefit of giving the UE access to its desired amount of resources fast, without waiting for handover to complete, or reporting channel state information before it knows the resources it will be allocated for receiving transmissions from the serving BS.
83 - Binnan Zhuang , Dongning Guo , 2015
Next generation (5G) cellular networks are expected to be supported by an extensive infrastructure with many-fold increase in the number of cells per unit area compared to today. The total energy consumption of base transceiver stations (BTSs) is an important issue for both economic and environmental reasons. In this paper, an optimization-based framework is proposed for energy-efficient global radio resource management in heterogeneous wireless networks. Specifically, with stochastic arrivals of known rates intended for users, the smallest set of BTSs is activated with jointly optimized user association and spectrum allocation to stabilize the network first and then minimize the delay. The scheme can be carried out periodically on a relatively slow timescale to adapt to aggregate traffic variations and average channel conditions. Numerical results show that the proposed scheme significantly reduces the energy consumption and increases the quality of service compared to existing schemes in the literature.
Motivated by the recent development of energy harvesting communications, and the trend of multimedia contents caching and push at the access edge and user terminals, this paper considers how to design an effective push mechanism of energy harvesting powered small-cell base stations (SBSs) in heterogeneous networks. The problem is formulated as a Markov decision process by optimizing the push policy based on the battery energy, user request and content popularity state to maximize the service capability of SBSs. We extensively analyze the problem and propose an effective policy iteration algorithm to find the optimal policy. According to the numerical results, we find that the optimal policy reveals a state dependent threshold based structure. Besides, more than 50% performance gain is achieved by the optimal push policy compared with the non-push policy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا