No Arabic abstract
This paper addresses the energy-saving problem for the downlink of heterogeneous networks, which aims at minimizing the total base stations (BSs) power consumption while each users rate requirement is supported. The basic idea of this work is to make use of the flexibility and scalability of the system such that more benefits can be gained by efficient resource management. This motivates us to propose a flexible BS power consumption model, which can control system resources, such as antennas, frequency carriers and transmit power allocation in an energy efficient manner rather than the on/off binary sleep mode for BSs. To denote these power-saving modes, we employ the group sparsity of the transmit power vector instead of the {0, 1} variables. Based on this power model, a semi-dynamic green resource management mechanism is proposed, which can jointly solve a series of resource management problems, including BS association, frequency carriers (FCs) assignment, and the transmit power allocation, by group sparse power control based on the large scale fading values. In particular, the successive convex approximation (SCA)-based algorithm is applied to solve a stationary solution to the original non-convex problem. Simulation results also verify the proposed BS power model and the green resource management mechanism.
Traditional macro-cell networks are experiencing an upsurge of data traffic, and small-cells are deployed to help offload the traffic from macro-cells. Given the massive deployment of small-cells in a macro-cell, the aggregate power consumption of small-cells (though being low individually) can be larger than that of the macro-cell. Compared to the macro-cell base station (MBS) whose power consumption increases significantly with its traffic load, the power consumption of a small-cell base station (SBS) is relatively flat and independent of its load. To reduce the total power consumption of the heterogeneous networks (HetNets), we dynamically change the operating states (on and off) of the SBSs, while keeping the MBS on to avoid any service failure outside active small-cells. First, we consider that the wireless users are uniformly distributed in the network, and propose an optimal location-based operation scheme by gradually turning off the SBSs closer to the MBS. We then extend the operation problem to a more general case where users are non-uniformly distributed in the network. Although this problem is NP-hard, we propose a joint location and user density based operation scheme to achieve near-optimum (with less than 1% performance loss in our simulations) in polynomial time.
We provide the reader with an accessible yet rigorous introduction to Bayesian optimisation with Gaussian processes (BOGP) for the purpose of solving a wide variety of radio resource management (RRM) problems. We believe that BOGP is a powerful tool that has been somewhat overlooked in RRM research, although it elegantly addresses pressing requirements for fast convergence, safe exploration, and interpretability. BOGP also provides a natural way to exploit prior knowledge during optimization. After explaining the nuts and bolts of BOGP, we delve into more advanced topics, such as the choice of the acquisition function and the optimization of dynamic performance functions. Finally, we put the theory into practice for the RRM problem of uplink open-loop power control (OLPC) in 5G cellular networks, for which BOGP is able to converge to almost optimal solutions in tens of iterations without significant performance drops during exploration.
Non-orthogonal multiple access (NOMA) has attracted much recent attention owing to its capability for improving the system spectral efficiency in wireless communications. Deploying NOMA in heterogeneous network can satisfy users explosive data traffic requirements, and NOMA will likely play an important role in the fifth-generation (5G) mobile communication networks. However, NOMA brings new technical challenges on resource allocation due to the mutual cross-tier interference in heterogeneous networks. In this article, to study the tradeoff between data rate performance and energy consumption in NOMA, we examine the problem of energy-efficient user scheduling and power optimization in 5G NOMA heterogeneous networks. The energy-efficient user scheduling and power allocation schemes are introduced for the downlink 5G NOMA heterogeneous network for perfect and imperfect channel state information (CSI) respectively. Simulation results show that the resource allocation schemes can significantly increase the energy efficiency of 5G NOMA heterogeneous network for both cases of perfect CSI and imperfect CSI.
In this paper, we consider the network power minimization problem in a downlink cloud radio access network (C-RAN), taking into account the power consumed at the baseband unit (BBU) for computation and the power consumed at the remote radio heads and fronthaul links for transmission. The power minimization problem for transmission is a fast time-scale issue whereas the power minimization problem for computation is a slow time-scale issue. Therefore, the joint network power minimization problem is a mixed time-scale problem. To tackle the time-scale challenge, we introduce large system analysis to turn the original fast time-scale problem into a slow time-scale one that only depends on the statistical channel information. In addition, we propose a bound improving branch-and-bound algorithm and a combinational algorithm to find the optimal and suboptimal solutions to the power minimization problem for computation, respectively, and propose an iterative coordinate descent algorithm to find the solutions to the power minimization problem for transmission. Finally, a distributed algorithm based on hierarchical decomposition is proposed to solve the joint network power minimization problem. In summary, this work provides a framework to investigate how execution efficiency and computing capability at BBU as well as delay constraint of tasks can affect the network power minimization problem in C-RANs.
We characterize the ergodic spectral efficiency of a non-cooperative and a cooperative type of K-tier heterogeneous networks with limited feedback. In the non-cooperative case, a multi-antenna base station (BS) serves a single-antenna user using maximum-ratio transmission based on limited feedback. In the cooperative case, a BS coordination set is formed by using dynamic clustering across the tiers, wherein the intra-cluster interference is mitigated by using multi-cell zero-forcing also based on limited feedback. Modeling the network based on stochastic geometry, we derive analytical expressions for the ergodic spectral efficiency as a function of the system parameters. Leveraging the obtained expressions, we formulate feedback partition problems and obtain solutions to improve the ergodic spectral efficiency. Simulations show the spectral efficiency improvement by using the obtained feedback partitions. Our major findings are as follows: 1) In the non-cooperative case, the feedback is only useful in a particular tier if the mean interference is small enough. 2) In the cooperative case, allocating more feedback to stronger intra-cluster BSs is efficient. 3) In both cases, the obtained solutions do not change depending on instantaneous signal-to-interference ratio.